首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Papain and lipase were immobilized on derivatized Sepharose 4-B. The activated agarose had a binding capacity of 1.2 micronmol amino groups/ml packed agarose or 17 mg proteins/g dry agarose. The immobilized enzyme preparations were tested for the effects of pH of assay, temperature of assay, and substrate concentrations. The effect of 6M urea on the activity of papain was also determined. Soluble forms of the enzymes were used for comparison. Immobilization of the enzymes resulted in slightly different pH and temperature optima for activities. For immobilized papain Km(app) was similar to the one observed with soluble papain. Immobilization of lipase, however, cause a decrease in Km values. The immobilized enzyme preparations were stable when stored at 4 degrees C and pH 7.5 for periods up to eight months. The soluble enzymes lost their activity within 96 hr under similar storage conditions. Immobilized papain did not lose any activity after treatment with 6M urea for 270 min, whereas soluble papain lost 81% of its activity after the urea treatment, indicating that the immobilization of papain imparted structural and conformational stability to this enzyme.  相似文献   

2.
The direct immobilization of soluble peroxidase isolated and partially purified from shoots of rice seedlings in calcium alginate beads and in calcium agarose gel was carried out. Peroxidase was assayed for guaiacol oxidation products in presence of hydrogen peroxide. The maximum specific activity and immobilization yield of the calcium agarose immobilized peroxidase reached 2,200 U mg−1 protein (540 mU cm−3 gel) and 82%, respectively. In calcium alginate the maximum activity of peroxidase upon immobilization was 210 mU g−1 bead with 46% yield. The optimal pH for agarose immobilized peroxidase was 7.0 which differed from the pH 6.0 for soluble peroxidase. The optimum temperature for the agarose immobilized peroxidase however was 30°C, which was similar to that of soluble peroxidase. The thermal stability of calcium agarose immobilized peroxidase significantly enhanced over a temperature range of 30∼60°C upon immobilization. The operational stability of peroxidase was examined with repeated hydrogen peroxide oxidation at varying time intervals. Based on 50% conversion of hydrogen peroxide and four times reuse of immobilized gel, the specific degradation of guaiacol for the agarose immobilized peroxidase increased three folds compared to that of soluble peroxidase. Nearly 165% increase in the enzyme protein binding to agarose in presence of calcium was noted. The results suggest that the presence of calcium, ions help in the immobilization process of peroxidase from rice shoots and mediates the direct binding of the enzyme to the agarose gel and that agarose seems to be a better immobilization matrix for peroxidase compared to sodium alginate.  相似文献   

3.
A purified phosphotriesterase was successfully immobilized onto trityl agarose in a fixed bed reactor. A total of up to 9200 units of enzyme activity was immobilized onto 2.0 mL of trityl agarose (65 mumol trityl groups/mL agarose), where one unit is the amount of enzyme required to catalyze the hydrolysis of one micromole of paraoxon in one min. The immobilized enzyme was shown to behave chemically and kinetically similar to the free enzyme when paraoxon was utilized as a substrate. Several organophosphate pesticides, methyl parathion, ethyl parathion, diazinon, and coumaphos were also hydrolyzed by the immobilized phosphotriesterase. However, all substrates exhibited an affinity for the trityl agarose matrix. For increased solubility and reduction in the affinity of these pesticides for the trityl agarose matrix, methanol/water mixtures were utilized. The effect of methanol was not deleterious when concentrations of less than 20% were present. However, higher concentrations resulted in elution of enzyme from the reactor. With a 10-unit reactor, a 1.0 mM paraoxon solution was hydrolyzed completely at a flow rate of 45 mL/h. Kinetic parameters were measured with a 0.1-unit reactor with paraoxon as a substrate at a flow rate of 22 mL/h. The apparent K(m) for the immobilized enzyme was 3-4 times greater than the K(m) (0.1 mM) for the soluble enzyme. Immobilization limited the maximum rate of substrate hydrolysis to 40% of the value observed for the soluble enzyme. The pH-rate profiles of the soluble and immobilized enzymes were very similar. The immobilization of phosphotriesterase onto trityl agarose provides an effective method esterase onto trityl agarose provides an effective method for hydrolyzing and thus detoxifyuing organophosphate pesticides and mammalian acetylcholinesterase inhinbitors.  相似文献   

4.
An amidase (EC 3.5.1.4) in branch 2 of the nitrilase superfamily, from the thermophilic strain Geobacillus pallidus RAPc8, was produced at high expression levels (20 U/mg) in small-scale fermentations of Escherichia coli. The enzyme was purified to 90% homogeneity with specific activity of 1,800 U/mg in just two steps, namely, heat-treatment and gel permeation chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and electron microscopic (EM) analysis of the homogenous enzyme showed the native enzyme to be a homohexamer of 38 kDa subunits. Analysis of the biochemical properties of the amidase showed that the optimal temperature and pH for activity were 50 and 7.0°C, respectively. The amidase exhibited high thermal stability at 50 and 60°C, with half-lives greater than 5 h at both temperatures. At 70 and 80°C, the half-life values were 43 and 10 min, respectively. The amidase catalyzed the hydrolysis of low molecular weight aliphatic amides, with d-selectivity towards lactamide. Inhibition studies showed activation/inhibition data consistent with the presence of a catalytically active thiol group. Acyl transfer reactions were demonstrated with acetamide, propionamide, isobutyramide, and acrylamide as substrates and hydroxylamine as the acyl acceptor; the highest reaction rate being with isobutyramide. Immobilization by entrapment in polyacrylamide gels, covalent binding on Eupergit C beads at 4°C and on Amberlite-XAD57 resulted in low protein binding and low activity, but immobilization on Eupergit C beads at 25°C with cross-linking resulted in high protein binding yield and high immobilized specific activity (80% of non-immobilized activity). Characterization of Eupergit C-immobilized preparations showed that the optimum reaction temperature was unchanged, the pH range was somewhat broadened, and stability was enhanced giving half-lives of 52 min at 70°C and 30 min at 80°C. The amidase has potential for application under high temperature conditions as a biocatalyst for d-selective amide hydrolysis producing enantiomerically pure carboxylic acids and for production of novel amides by acyl transfer.  相似文献   

5.
Six different types of materials including PVC, chitosan, chitin, agarose, Sepharose, and Trisacryl were evaluated for their lipase-coupling efficiencies. Among those tested, chitosan yielded the highest amount of lipase (79 mg/mL packed gel) immobilized but with lowest oil hydrolytic activity (0.03 mg eq/mL gel). The amount of lipase immobilized was affected by the length of the hydrocarbon chain attached to the PVC matrix but not by the pore size of the supports used. On the other hand, the specific activity of the immobilized lipase was affected by the pore size but not by the chain length of the hydrocarbon attached to the support. After immobilization, the optimal reaction pH was shifted from 7.5 to 8.5 and the optimal reaction temperature from 35 to 45-55 degrees C. Lipase immobilized on PVC exhibited higher thermal stability than that on agarose. The half-life of the PVC immobilized lipase operating at 30 degrees C in a packed-bed reactor was estimated to be about 400 h.  相似文献   

6.
Rat liver microsomes were immobilized by entrapment in a chemically crosslinked synthetic gel obtained by crosslinking prepolymerized polyacrylamide-hydrazide with glyoxal. Approximately 88% of the microsomal fraction was entrapped in the gel. The specific rate of O-demethylation of p-nitroanisole was used to assay the microsomal cytochrome P-450 activity of the immobilized microsomal preparations. The gel entrapped microsomes showed monooxygenase activity at 37 degrees C of Vmax = 2.3 nmol p-nitrophenol/min per nmol cytochrome P-450, similar to that of microsomes in suspension. The Km value for the p-nitroanisole-immobilized microsomal cytochrome P-450 system (1.2 X 10(-5) M) was rather close to that of microsomes in suspension (0.8 X 10(-5) M). Under the experimental conditions used the pH activity curve of the immobilized preparation was shifted towards more alkaline values by approx. 0.5 pH unit in comparison with microsomes in suspension. The rate of cytochrome c reduction by the immobilized microsomal system (11.7 nmol/min per mg protein) at 25 degrees C was considerably lower than that of the control (microsomes in suspension, 78 nmol/min per mg protein). Enzyme activity in both preparations showed the same temperature dependence at the temperature range of 10 to 37 degrees C. The immobilized microsomal monooxygenase system could be operated continuously for several hours at 37 degrees C provided that adequate amounts of an NADPH-generating system were added periodically. Under similar conditions a control microsomal suspension lost its enzymic activity within 90 min.  相似文献   

7.
Human placenta was shown to contain practically all known types of aminooxidase, i.e., Membrane-bound and soluble monoamine oxidases A that predominantly oxidize serotonin (Km approximately 0.05 and 0.2 mM) and tyramine (Km approximately 0.03 and 0.085 mM), partly oxidize phenylethylamine (Km approximately 0.013 and 0.1 mM) and slightly oxidize benzylamine; Monoamine oxidase B and its intermediate form, B', with equal sensitivity towards the inhibitors, Lilly 51641 and deprenyl. The main substrates for these enzymes are phenylethylamine (Km = 0.011 mM for the membrane-bound and 0.019 mM for the soluble enzymes); Membrane-bound and soluble benzylamine oxidases that are stable to MAO inhibitors but are highly labile towards semicarbazide and aminoguanidine and that predominantly oxidize benzylamine. The Km value for the soluble enzyme is 0.19 mM, its specific activity is 0.058 nmol aldehyde/min/mg protein, which markedly exceeds that for serum benzylamine oxidase (i.e., 0.014 nmol/min/mg) and thus excludes its serum origin; Diamine oxidase that oxidizes putrescine (Km = 0.025 mM), histamine and cadaverine and only slightly oxidizes benzylamine. One characteristic feature of the placenta is the presence of soluble MAO as well as MAO incorporated into the endoplasmic reticulum membrane (microsomes). In all probability, these enzymes are precursors of the mitochondrial enzyme. The concentration of MAO A in the mitochondria is approximately 1.3%, that in microsomes--approximately 1%, kcat = 270 and 320 min-1, respectively.  相似文献   

8.
alpha-Chymotrypsin was immobilized with a high coupling yield (up to 80%) to tresyl chloride activated Sepharose CL-4B.The immobilized enzyme was tested for its ability to synthesize soluble peptides from N-acetylated amino acid esters as acyl donors and amino acid amides as acceptor amines in water-water-miscible organic solvent mixtures. It was found that the yield of peptide increased with increasing concentration of organic cosolvent. Almost complete synthesis (97%) of Ac-Phe-Ala-NH(2) was obtained from Ac-Phe-OMe using a sixfold excess of Ala-NH(2). The rate of peptide formation in aqueous-organic solvent mixtures was good. Thus, 0.1M peptide was formed in less than 2 h in 50 vol% DMF with 0.1 mg immobilized chymotrypsin/mL reaction mixture. The immobilized enzyme distinguished between the L and D configurations of acceptor amino acid amides even in high concentration of nonaqueous component (90% 1,4-butanediol). The effect of temperature was studied. It was found that both the yield of peptide and the stability of immobilized enzyme increased when the temperature was lowered. Experiments could be performed at subzero temperatures in the aqueous-organic solvent mixtures resulting in very high yield of peptide. After three weeks continuous operation at 4 degrees C in 50% DMF, the immobilized enzyme retained 66%of its original synthetic activity. The activity of the immobilized enzyme was better conserved with a preparation made from agarose with a higher tresyl group content compared to a preparation made from a lower activated agarose, indicating that multiple point of attachment has a favorable effect on the stability of the enzyme in aqueous-organic solvent mixtures. The major advantage of using water-miscible instead of water-immiscible organic solvents to promote peptide syntheses appears to be the increased solubility of substrates and products, making continuous operation possible.  相似文献   

9.
Heparinase immobilized to agarose has previously been shown to be useful in degrading heparin and thereby preventing thromboembolytic complications when this anticoagulant has been used in extracorporeal perfusions. The current study examined the kinetics of this immobilized enzyme. When heparinase is covalently bound to 8% agarose, the partition coefficient of heparin in the catalytic particle is 0.36 +/- 0.048 (N = 10). The immobilized enzyme has a K(m) of 0.15 +/- 0.03 mg/mL and an activation energy of 10.3 +/- 0.57 kcal/gmol (N = 5). These values are statistically indistinguishable from the values for the free enzyme. The immobilized enzyme showed a pH activity optimum between 7.0 and 7.4, compared to the optimum pH of 6.5 for the soluble enzyme. The activity optimum of immobilized heparinase with respect to salt concentration was between 0 and 0.1M. A reactor containing immobilized heparinase recirculating internally at 1300 mL/min behaved as a continuously stirred tank reactor (CSTR) when solutions at a flow rate of 120 mL/min were passed through the device. The residence time distribution was determined using blue dextran (molecular weight 2 x 10(6) daltons), which is sterically excluded from the agarose catalyst. A model of the heparinase reactor based on ideal CSTR behavior and the immobilized enzyme kinetic parameters was developed. It accurately predicted experimental conversions over a range of catalyst volumes, enzyme loadings, and substrate concentrations to within 7% in most cases and with a maximum deviation of 13%.  相似文献   

10.
Horse liver alcohol dehydrogenase, which catalyzes oxidoreductions for a broad spectrum of substrates of organic chemical interest, was immobilized on CNBr-activated Sepharose and on decylamine-substituted agarose. The specific activities of the immobilized enzyme preparations were compared with the free enzyme, and the apparent K(m) values of the preparations were determined for a selection of substrates. At pH 9 and 60 degrees C, soluble liver alcohol dehydrogenase was rapidly inactivated, while the enzyme immobilized on CNBr-activated Sepharose was more stable. Adenosine monophosphate (AMP), adenosine diphosphate, and adenosine diphosphoribose protected the free and immobilized alcohol dehydrogenase against heat inactivation. On storage under a variety of conditions, AMP effectively stabilized free horse liver alcohol dehydrogenase and the immobilized preparations.  相似文献   

11.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

12.
Abstract

The chlorpromazine-sensitive GTPase from the cell membrane of rat cerebral cortex was purified to homogenity by using DEAE Bio-Gel A agarose, hydroxyapatite and heparin agarose chromatography. The purified chlorpromazine-sensitive GTPase was purified 370-fold to obtain a final specific activity of 40 nmol GTP hydrolyzed/min/mg protein. The purified enzyme was inhibited by chlorpromazine but not by compound 48/80. Magnesium was required for its activity instead of calcium. The purified enzyme had an apparent pH optimum of 8.0, and molecular weight was estimated to be 58,000.  相似文献   

13.
J Knudsen  S Clark    R Dils 《The Biochemical journal》1976,160(3):683-691
1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000+/-500 (mean+/-S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.  相似文献   

14.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   

15.
Partially purified glucoamylase from Aspergillus awamori NRRL 3112 was immobilized on diethylaminoethyl cellulose in the presence of low ionic-strength acetate buffers at pH 4.2. The active enzyme–cellulose complex was used to convert starch substrates continuously to glucose in stirred reactors. Substrate concentrations as high as 30% could be quantitatively converted to glucose at a rate of more than 25 mg/min/liter at 55°C for periods of 3 to 4 weeks in a 4-liter reactor. Shutdowns were due to mechanical problems and not to loss of enzymes, which could be recovered with no appreciable loss of specific activity. Transfer products, such as isomaltose and panose, were present in immobilized enzyme-produced syrups but to no greater degree than in soluble glucoamylase digests of starch.  相似文献   

16.
Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity   总被引:6,自引:0,他引:6  
Purified leukotriene A4 hydrolase from human leukocytes is shown to exhibit peptidase activity towards the synthetic substrates alanine-4-nitroanilide and leucine-4-nitroanilide. The enzymatic activity is abolished after heat treatment (70 degrees C, 30 min). At 37 degrees C these substrates are hydrolyzed at a rate of 380 and 130 nmol/mg/min, respectively, and there is no enzyme inhibition during catalysis. Apo-leukotriene A4 hydrolase, obtained by removal of the intrinsic zinc atom, exhibits only a low peptidase activity which can be restored by the addition of stoichiometric amounts of zinc. Reconstitution of the apoenzyme with cobalt results in a peptidase activity which exceeds that of enzyme reactivated with zinc. Preincubation of the native enzyme with leukotriene A4 reduces the peptidase activity. Semipurified preparations of bovine intestinal aminopeptidase and porcine kidney aminopeptidase do not hydrolyze leukotriene A4 into leukotriene B4.  相似文献   

17.
The covalent immobilization of β-galactosidase from Kluyveromyces lactis (β-gal) on to two different porous carriers, CPC-silica and agarose, is reported. CPC-silica was silanizated and activated with glutaraldehyde. The activation of agarose via a cyanylating agent (CDAP) was optimized. Gel-bound protein and gel-bound activity were both measured directly, allowing the determination of apparent specific activities (S.A.). Higher amounts of β-gal were immobilized on the activated CPC-silica (maximum capacity, 23 mg ml−1 of packed support) than on the CDAP-activated agarose. For the lower enzyme loading assayed (12.6 mg ml−1 packed support), 100% of the enzyme was immobilized but only 34% of its activity was expressed. This inactivation during immobilization was confirmed by the S.A. values (22–29 EU mg−1 for the CPC-derivatives and 80 EU mg−1 for soluble β-gal). The Kapp (3.4 mM) for the CDAP-derivative with ONPG as substrate was higher than the KM value for soluble β-gal (2 mM). When the enzyme loading was increased five-fold, the Kapp increased four-fold, to 13 mM. The Vapp values for the CPC-derivatives were remarkably lower than the Vmax for soluble β-galactosidase. CDAP-derivatives showed better thermal stabilities than CPC-derivatives but neither of them enhanced the stability of the soluble enzyme. When stored at 4°C, the activity of both derivatives remained stable for at least 2 months. Both derivatives displayed high percentages of lactose conversion (90%) in packed bed mini-reactors. Glucose production was 3.3-fold higher for the CPC-derivative than for the CDAP-derivative, as a consequence of the higher flow rates achieved.  相似文献   

18.
In this study, feral leaping mullet (Liza saliens) liver cytosolic glutathione S-transferases (GSTs) were investigated and characterized using 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (EA) as substrates. The average GST activities towards CDNB and EA were found to be 1365 +/- 41 and 140 +/- 20 nmol/min per mg protein, respectively. The effects of cytosolic protein amount and temperature ranging from 4 to 70 degrees C on enzyme activities were examined. While both activities towards CDNB and EA showed similar dependence on protein amount, temperature optima were found as 37 and 42 degrees C, respectively. In addition, the effects of pH on GST-CDNB and -EA activities were studied and different pH activity profiles were observed. For both substrates, GST activities were found to obey Michaelis-Menten kinetics with apparent V(max) and K(m) values of 1661 nmol/min per mg protein and 0.24 mM and 157 nmol/min per mg protein and 0.056 mM for CDNB and EA, respectively. Distribution of GST in Liza saliens tissues was investigated and compared with other fish species. Very high GST activities were measured in tissues from Liza saliens such as liver, kidney, testis, proximal intestine, and gills. Moreover, our results suggested that GST activities from Liza saliens would be a valuable biomarker for aquatic pollution.  相似文献   

19.
The soluble form of guanylate cyclase from rat lung has been purified approximately 23,000-fold to homogeneity by isoelectric precipitation, GTP-Sepharose chromatography, and preparative gel electrophoresis. A single protein-staining band is observed after analytical gel electrophoresis on either 4 or 7.5% polyacrylamide gels. The final purified enzyme has a specific activity of about 700 nmol of cyclic GMP formed/min/mg of protein at 37 degrees C in the presence of 4.8 mM MnCl2 and 100 micrometer GTP. Bovine serum albumin appears to slightly increase guanylate cyclase activity, but mainly stabilizes the purified enzyme; in its presence, specific activities in excess of 1 mumol of cyclic GMP formed/min/mg of enzyme protein can be obtained. When Mg2+ or Ca2+ are substituted for Mn2+, specific activities decrease to approximately 21 and 40 nmol of cyclic GMP formed/min/mg of protein, respectively. The apparent Michaelis constant for MnGTP in the presence of 4.8 mM MnCl2 is 10.2 micrometer. Kinetic patterns on double reciprocal plots as a function of free Mn2+ are concave downward. The native enzyme has a molecular weight of approximately 151,000 as determined on Sephacryl S-200; sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with approximate molecular weights of 79,400 and 74,000. Thus, it appears that the soluble form of guanylate cyclase from rat lung exists as a dimer.  相似文献   

20.
Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-dimethylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5°C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50°C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号