首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poliovirus initiates infection of primate cells by binding to the poliovirus receptor, Pvr. Mouse cells do not bind poliovirus but express a Pvr homolog, Mph, that does not function as a poliovirus receptor. Previous work has shown that the first immunoglobulin-like domain of the Pvr protein contains the virus binding site. To further identify sequences of Pvr important for its interaction with poliovirus, stable cell lines expressing mutated Pvr molecules were examined for their abilities to bind virus and support virus replication. Substitution of the amino-terminal domain of Mph with that of Pvr yields a molecule that can function as a poliovirus receptor. Cells expressing this chimeric receptor have normal binding affinity for poliovirus, yet the kinetics of virus replication are delayed. Results of virus alteration assays indicate that this chimeric receptor is defective in converting native virus to 135S altered particles. This defect is not observed with cells expressing receptor recombinants that include Pvr domains 1 and 2. Because altered particles are believed to be an intermediate in poliovirus entry, these findings suggest that Pvr domains 2 and 3 participate in early stages of infection. Additional mutants were made by substituting variant Mph residues for the corresponding residues in Pvr. The results were interpreted by using a model of Pvr predicted from the known structures of other immunoglobulin-like V-type domains. Analysis of stable cell lines expressing the mutant proteins revealed that virus binding is influenced by mutations in the predicted C'-C" loop, the C" beta-strand, the C"-D loop, and the D-E loop. Mutations in homologous regions of the immunoglobulin-like CD4 molecule alter its interaction with gp120 of human immunodeficiency virus type 1. Cells expressing Pvr mutations on the predicted C" edge do not develop cytopathic effect during poliovirus infection, suggesting that poliovirus-induced cytopathic effect may be induced by the virus-receptor interaction.  相似文献   

2.
Although the initial site of poliovirus replication in humans is the intestine, previously isolated transgenic mice which carry the human poliovirus receptor (PVR) gene (TgPVR mice), which develop poliomyelitis after intracerebral inoculation, are not susceptible to infection by the oral route. The low levels of PVR expressed in the TgPVR mouse intestine might explain the absence of poliovirus replication at that site. To ascertain whether PVR is the sole determinant of poliovirus susceptibility of the mouse intestine, we have generated transgenic mice by using the promoter for rat intestine fatty acid binding protein to direct PVR expression in mouse gut. Pvr was detected by immunohistochemistry in the enterocytes and M cells of transgenic mouse (TgFABP-PVR) small intestine. Upon oral inoculation with poliovirus, no increase in virus titer was detected in the feces of TgFABP-PVR mice, and no virus replication was observed in the small intestine, although poliovirus replicated in the brain after intracerebral inoculation. The failure of poliovirus to replicate in the TgFABP-PVR mouse small intestine was not due to lack of virus binding sites, because poliovirus could attach to fragments of small intestine from these mice. These results indicate that the inability of poliovirus to replicate in the mouse alimentary tract is not solely due to the absence of virus receptor, and other factors are involved in determining the ability of poliovirus to replicate in the mouse gut.  相似文献   

3.
A Zibert  E Wimmer 《Journal of virology》1992,66(12):7368-7373
The human poliovirus receptor (hPVR) is a glycoprotein with three immunoglobulin-like extracellular domains, of which the N-terminal domain (V-type domain) is necessary and sufficient for virus binding and uptake. The effect of N glycosylation of the V domain of hPVR on binding and entry of poliovirus was studied. Stable mouse L-cell lines were generated that express PVR-specific cDNA. One of the cell lines expressed a mutant of hPVR, in which both asparagine residues of the two N-glycosylation sites of the V domain were changed to aspartate (N105D) and serine (N120S), respectively. In the second mutant cell line, the portion of the cDNA encoding the V domain of hPVR was substituted by the homologous sequence of the recently isolated PVR cDNA from monkey cells. This V domain naturally lacks both N glycosylation sites and encodes D105 and S120 at the respective positions of the open reading frame. Absence of N glycosylation at these sites was demonstrated by in vitro translation of the two mutant coding sequences in the presence of microsomal membranes. Both PVR mutant cell lines were capable of poliovirus binding and replication. However, binding of anti-PVR monoclonal antibody D171 and protection from viral replication by this antibody were observed only with the glycosylation mutant carrying the human V domain. In contrast, infection of the cell line expressing the monkey-human hybrid receptor was not blocked even though monkey cells are fully protected by monoclonal antibody D171. The data suggest that N glycosylation of the V domain of hPVR is not essential for viral replication in human tissues and that differential glycosylation of hPVR at these sites is likely not a determinant of viral tissue tropism. Furthermore, the virus binding site and the epitope recognized by monoclonal antibody D171 do not appear to overlap.  相似文献   

4.
The development of a mouse model for poliomyelitis that is transgenic for the human poliovirus receptor (hPVR) has made it much easier to investigate the efficiency of the viral dissemination process in a whole organism. These studies have given an insight into the mechanisms of blood-brain barrier permeation and neural transport. Strain-specific neurovirulence levels, however, appear to depend mainly on the replicating capacity of the virus in the central nervous system rather than the dissemination efficiency. Studies of the poliovirus-induced cytopathic effects on neural cells and specific subcellular localization of hPVR isoforms might determine a new course of investigation of poliovirus pathogenesis.  相似文献   

5.
To identify sequences of the cellular poliovirus receptor (PVR) involved in viral infection, mutant PVR cDNAs were constructed and assayed for biological activity in mouse L cells. To confirm that mutant PVRs reached the cell surface, an immunological tag, consisting of part of CH3 from human immunoglobulin G1, was engineered into the PVR. Deletion of PVR amino acids 256 to 320 or 385 to the carboxy terminus yielded receptors that were able to support poliovirus infection. PVRs lacking amino acids 40 to 136 or 137 to 256 were expressed at the cell surface but were not active as receptors for poliovirus. The results show that immunoglobulin-type domain 3 and the extreme carboxy terminus of the PVR are not required for viral receptor function, but sequences within the two amino-terminal domains contribute to the initiation of poliovirus infection.  相似文献   

6.
We previously reported the isolation of a mutant poliovirus lacking the entire genomic RNA 3' noncoding region. Infection of HeLa cell monolayers with this deletion mutant revealed only a minor defect in the levels of viral RNA replication. To further analyze the consequences of the genomic 3' noncoding region deletion, we examined viral RNA replication in a neuroblastoma cell line, SK-N-SH cells. The minor genomic RNA replication defect in HeLa cells was significantly exacerbated in the SK-N-SH cells, resulting in a decreased capacity for mutant virus growth. Analysis of the nature of the RNA replication deficiency revealed that deleting the poliovirus genomic 3' noncoding region resulted in a positive-strand RNA synthesis defect. The RNA replication deficiency in SK-N-SH cells was not due to a major defect in viral translation or viral protein processing. Neurovirulence of the mutant virus was determined in a transgenic mouse line expressing the human poliovirus receptor. Greater than 1,000 times more mutant virus was required to paralyze 50% of inoculated mice, compared to that with wild-type virus. These data suggest that, together with a cellular factor(s) that is limiting in neuronal cells, the poliovirus 3' noncoding region is involved in positive-strand synthesis during genome replication.  相似文献   

7.
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection.  相似文献   

8.
The cellular receptor for poliovirus CD155 (or PVR) is the founding member of a new class of membrane-associated immunoglobulin-like proteins, which include the mouse tumor-associated antigen E4 (Tage4) and three proteins termed "nectins." Using a yeast two-hybrid screen we have discovered that the cytoplasmic domain of CD155 associates strongly and specifically with Tctex-1, a light chain of the dynein motor complex, the latter representing the major driving force for retrograde transport of endocytic vesicles and membranous organelles. We confirmed the interaction biochemically and by co-immunoprecipitation, and we mapped the Tctex-1 binding site to a SKCSR motif within the juxtamembrane region of CD155. Tctex-1 immunoreactivity was detected in mouse sciatic nerve and spinal cord (two tissues of central importance for poliovirus pathogenesis) in punctate, possibly vesicular, patterns. We propose that the cytoplasmic domain may target CD155-containing endocytic vesicles to the microtubular network. Neurotropic viruses like poliovirus, herpesvirus, rabies virus, and pseudorabies virus all utilize neuronal retrograde transport to invade the central nervous system. Association with Tctex-1 and, hence, with the dynein motor complex may offer an explanation for how poliovirus hijacks the cellular transport machinery to retrogradely ascend along the axon to the neuronal cell body.  相似文献   

9.
CD44 is not required for poliovirus replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
The identification of a monoclonal antibody, AF3, which recognizes a single isoform of the cell surface protein CD44 and preferentially blocks binding of serotype 2 poliovirus to HeLa cells, suggested that CD44 might be an accessory molecule to Pvr, the cell receptor for poliovirus, and that it could play a role in the function of the poliovirus receptor site. We show here that only AF3 blocks binding of serotype 2 poliovirus to HeLa cells and, in contrast to a previously published report, that the anti-CD44 monoclonal antibodies A3D8 and IM7 are unable to block binding of poliovirus. To determine whether CD44 is involved in poliovirus infection, we analyzed the replication of all three serotypes of poliovirus in human neuroblastoma cells which lack or express CD44 and in mouse neuroblastoma cells which lack Pgp-1, the mouse homolog of human CD44, and which express Pvr. All three poliovirus serotypes replicate with normal kinetics and to normal levels in the absence or presence of CD44 or in the absence of Pgp-1. Furthermore, the binding affinity constants of all three poliovirus serotypes for Pvr are unaffected by the presence or absence of CD44 in the human neuroblastoma cell line. We conclude that CD44 and Pgp-1 are not required for poliovirus replication and are unlikely to be involved in poliovirus pathogenesis.  相似文献   

10.
S Koike  I Ise  Y Sato  H Yonekawa  O Gotoh    A Nomoto 《Journal of virology》1992,66(12):7059-7066
Using cDNA of the human poliovirus receptor (PVR) as a probe, two types of cDNA clones of the monkey homologs were isolated from a cDNA library prepared from an African green monkey kidney cell line. Either type of cDNA clone rendered mouse L cells permissive for poliovirus infection. Homologies of the amino acid sequences deduced from these cDNA sequences with that of human PVR were 90.2 and 86.4%, respectively. These two monkey PVRs were found to be encoded in two different loci of the genome. Evolutionary analysis suggested that duplication of the PVR gene in the monkey genome had occurred after the species differentiation between humans and monkeys. The NH2-terminal immunoglobulin-like domain, domain 1, of the second monkey PVR, which lacks a putative N-glycosylation site, mediated poliovirus infection. In addition, a human PVR mutant without N-glycosylation sites in domain 1 also promoted viral infection. These results suggest that domain 1 of the monkey receptor also harbors the binding site for poliovirus and that sugar moieties possibly attached to this domain of human PVR are dispensable for the virus-receptor interaction.  相似文献   

11.
K Shiroki  H Kato  S Koike  T Odaka    A Nomoto 《Journal of virology》1993,67(7):3989-3996
Two cell lines, TgSVA and TgSVB, were established from the kidneys of transgenic mice carrying the human gene encoding poliovirus receptor. The cells were highly susceptible to poliovirus infection, and a large amount of infectious particles was produced in the infected cells at 37 degrees C. However, the virus yield was greatly reduced at 40 degrees C. This phenomenon was common to all mouse cells tested. To identify the temperature-sensitive step(s) of the virus infection cycle, different steps of the infection cycle were examined for temperature sensitivity. The results strongly suggested that the growth restriction observed at 40 degrees C was due to reduced efficiency of the initiation process of virus-specific RNA synthesis. Furthermore, this restriction appeared to occur only on the synthesis of positive-strand RNA. Virus-specific RNA synthesis in crude replication complexes was not affected by the nonpermissive temperature of 40 degrees C. In vitro uridylylation of VPg seemed to be temperature sensitive only after prolonged incubation at 40 degrees C. These results indicate that a specific host factor(s) is involved in the efficient initiation process of positive-strand RNA synthesis of poliovirus and that the host factor(s) is temperature sensitive in TgSVA and TgSVB cells.  相似文献   

12.
Expression of the human poliovirus receptor (PVR) in transgenic mice results in susceptibility to poliovirus infection. In the primate host, poliovirus infection is characterized by restricted tissue tropism. To determine the pattern of poliovirus tissue tropism in PVR transgenic mice, PVR gene expression and susceptibility to poliovirus infection were examined by in situ hybridization. PVR RNA is expressed in transgenic mice at high levels in neurons of the central and peripheral nervous system, developing T lymphocytes in the thymus, epithelial cells of Bowman's capsule and tubules in the kidney, alveolar cells in the lung, and endocrine cells in the adrenal cortex, and it is expressed at low levels in intestine, spleen, and skeletal muscle. After infection, poliovirus replication was detected only in neurons of the brain and spinal cord and in skeletal muscle. These results demonstrated that poliovirus tissue tropism is not governed solely by expression of the PVR gene nor by accessibility of cells to virus. Although transgenic mouse kidney tissue expressed poliovirus binding sites and was not a site of poliovirus replication, when cultivated in vitro, kidney cells developed susceptibility to infection. Identification of the changes in cultured kidney cells that permit poliovirus infection may provide information on the mechanism of poliovirus tissue tropism.  相似文献   

13.
Disulfide-linked conjugates of poliovirus with streptavidin or concanavalin A were formed and the binding of the conjugates to mouse L cells that lack natural poliovirus receptors was studied. The conjugate with streptavidin was specifically bound to biotinylated L cells, but not to unmodified L cells. The conjugate with conA was bound to L cells in the absence of, but not in the presence of alpha-methyl mannoside. Incubation of L cells with bound conjugates did not produce virus, although the conjugates were highly infectious in HeLa cells, containing natural poliovirus receptors. This suggests that the artificially bound virus was unable to penetrate the L cells and start replication. The possibility that binding of the virus to the natural receptor is required for efficient infection is discussed.  相似文献   

14.
Martinez WM  Spear PG 《Journal of virology》2001,75(22):11185-11195
One step in the process of herpes simplex virus (HSV) entry into cells is the binding of viral glycoprotein D (gD) to a cellular receptor. Human nectin-2 (also known as HveB and Prr2), a member of the immunoglobulin (Ig) superfamily, serves as a gD receptor for the entry of HSV-2, variant forms of HSV-1 that have amino acid substitutions at position 25 or 27 of gD (for example, HSV-1/Rid), and porcine pseudorabies virus (PRV). The gD binding region of nectin-2 is believed to be localized to the N-terminal variable-like (V) Ig domain. In order to identify specific amino acid sequences in nectin-2 that are important for HSV entry activity, chimeric molecules were constructed by exchange of sequences between human nectin-2 and its mouse homolog, mouse nectin-2, which mediates entry of PRV but not HSV-1 or HSV-2. The nectin-2 chimeric molecules were expressed in Chinese hamster ovary cells, which normally lack a gD receptor, and tested for cell surface expression and viral entry activity. As expected, chimeric molecules containing the V domain of human nectin-2 exhibited HSV entry activity. Replacement of either of two small regions in the V domain of mouse nectin-2 with amino acids from the equivalent positions in human nectin-2 (amino acids 75 to 81 or 89) transferred HSV-1/Rid entry activity to mouse nectin-2. The resulting chimeras also exhibited enhanced HSV-2 entry activity and gained the ability to mediate wild-type HSV-1 entry. Replacement of amino acid 89 of human nectin-2 with the corresponding mouse amino acid (M89F) eliminated HSV entry activity. These results identify two different amino acid sequences, predicted to lie adjacent to the C' and C" beta-strands of the V domain, that are critical for HSV entry activity. This region is homologous to the human immunodeficiency virus binding region of CD4 and to the poliovirus binding region of CD155.  相似文献   

15.
Bidirectional entry of poliovirus into polarized epithelial cells.   总被引:4,自引:2,他引:2       下载免费PDF全文
The interactions of viruses with polarized epithelial cells are of some significance to the pathogenesis of disease because these cell types comprise the primary barrier to many virus infections and also serve as the sites for virus release from the host. Poliovirus-epithelial cell interactions are of particular interest since this virus is an important enteric pathogen and the host cell receptor has been identified. In this study, poliovirus was observed to adsorb to both the apical and basolateral surfaces of polarized monkey kidney (Vero C1008) and human intestinal (Caco-2) epithelial cells but exhibited preferential binding to the basolateral surfaces of both cell types. Localization of the poliovirus receptor by a receptor-specific monoclonal antibody (D171) revealed a similar distribution predominantly on basolateral membranes, and treatment of cells with antibody D171 inhibited virus adsorption to both membrane surfaces. Poliovirus was able to initiate infection with similar efficiency following adsorption to either surface, and infection was blocked at both surfaces by D171, indicating that functional receptor molecules are expressed on both surfaces at sufficient density to mediate efficient infection at the apical and basolateral plasma membranes. Poliovirus infection resulted in a decrease in transepithelial resistance which was inhibited by prior treatment with monoclonal antibody D171 and occurred prior to other visible cytopathic effects. These results have interesting implications for viral pathogenesis in the human gut.  相似文献   

16.
To study the kinetics and equilibrium of poliovirus binding to the poliovirus receptor, we used surface plasmon resonance to examine the interaction of a soluble form of the receptor with poliovirus. Soluble receptor purified from mammalian cells is able to bind poliovirus, neutralize viral infectivity, and induce structural changes in the virus particle. Binding studies revealed that there are two binding sites for the receptor on the poliovirus type 1 capsid, with affinity constants at 20 degrees C of K(D)(1) = 0.67 microm and K(D)(2) = 0.11 microm. The relative abundance of the two binding sites varies with temperature. At 20 degrees C, the K(D)(2) site constitutes approximately 46% of the total binding sites on the sensor chip, and its relative abundance decreased with decreasing temperature such that at 5 degrees C, the relative abundance of the K(D)(2) site is only 12% of the total binding sites. Absolute levels of the K(D)(1) site remained relatively constant at all temperatures tested. The two binding sites may correspond to docking sites for domain 1 of the receptor on the viral capsid, as predicted by a model of the poliovirus-receptor complex. Alternatively, the binding sites may be a consequence of structural breathing, or could result from receptor-induced conformational changes in the virus.  相似文献   

17.
The crystal structure of V510, a chimeric type 2/type 1 poliovirus, has been determined at 2.6 A resolution. Unlike the parental Mahoney strain of type 1 poliovirus, V510 is able to replicate in the mouse central nervous system, due entirely to the replacement of six amino acids in the exposed BC loop of capsid protein VP1. Significant structural differences between the two strains cluster in a major antigenic site of the virus, located at the apex of the radial projection which surrounds the viral five-fold axis. Residues implicated in the mouse-virulence of poliovirus by genetic studies are located in this area, and include the residues which are responsible for stabilizing the conformation of the BC loop in V510. Despite evidence that this area is not involved in receptor binding in cultured primate cells, the genetic and structural observations suggest that this area plays a critical role in receptor interactions in the mouse central nervous system. These results provide a structural framework for further investigation of the molecular determinants of host and tissue tropism in viruses.  相似文献   

18.
The poliovirus receptor (Pvr) is a member of the immunoglobulin superfamily of proteins, but its function in the cell is not known. Southern blot hybridization analysis indicated that the murine genome contains a sequence homolog of pvr. As a first step toward using the murine pvr homolog (mph) to study the function of Pvr, murine genomic and cDNA clones encoding mph were isolated. mph encodes a polypeptide with extensive sequence similarity to the extracellular domains of the human PVR. mph mRNAs of 2.0 and 3.0 kb are transcribed in the adult mouse brain, the spinal cord, the spleen, the kidney, the heart, and the liver. The Mph protein does not function as a receptor for poliovirus. However, substitution of domain 1 of the Mph protein with the corresponding sequence from pvr produced a chimeric receptor that could bind poliovirus and lead to productive infection. By constructing pvr-mph chimeras, it will be possible to identify the contact points of poliovirus within domain 1 of Pvr. Identification of the ligand and the cellular function of the Mph protein may help us understand the role of Pvr in the cell.  相似文献   

19.
20.
Recombinant viruses between the virulent Mahoney and attenuated Sabin 1 strains of poliovirus type 1 were subjected to neurovirulence tests using a transgenic (Tg) mouse line, ICR-PVRTg1, that carried the human poliovirus receptor gene. The Tg mice were inoculated intracerebrally with these recombinant viruses and observed for clinical signs, histopathological lesions, and viral antigens as parameters of neurovirulence of the viruses. These parameters observed in the Tg mice were different for different inoculated viruses. Dose-dependent incidences of paralysis and of death were observed in the Tg mice inoculated with any viruses used. This indicates that values of 50% lethal dose are useful to score a wide range of neurovirulence of poliovirus. The neurovirulence of individual viruses estimated by the Tg mouse model had a strong correlation with those estimated by monkey model. Consequently, the mouse tests identified the neurovirulence determinants on the genome of poliovirus that had been identified by monkey tests. In addition, the mouse tests revealed new neurovirulence determinants, that is, different nucleotides between the two strains at positions 189 and 21 and/or 935 in the 5'-proximal 1,122 nucleotides. The Tg mice used in this study may be suitable for replacing monkeys for investigating poliovirus neurovirulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号