首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
CH12.LX B cells have been used as a lymphoma model of MHC restricted, antigen-dependent B cell differentiation. These B cells express surface IgM and secrete IgM. Most recently we have demonstrated that CH12.LX is a model of cytokine driven IgA differentiation. Recently, transforming growth factor beta (TGF-beta) has been shown to be a probable switch factor for IgA in LPS-stimulated mouse lymphocytes, therefore we chose CH12.LX B cells to study the effect of IL-4, TGF-beta and LPS in IgA isotype switching. Adding TGF-beta to the monoclonal cell line CH12.LX results in induction of mIgA expression but no enhancement of IgA secretion similar to the effect of IL-4. The addition of LPS serves as a non-specific stimulus to enhance the secretion of the expressed immunoglobulin, but has no IgA specific activity of its own. IL-4 and TGF-beta together are synergistic for mIgA expression. Pretreatment studies show that TGF-beta added after IL-4 is the same as TGF-beta alone whereas the converse is the same as adding both cytokines together. TGF-beta acts by increasing the steady state levels of alpha message, whereas northern analysis indicates that IL-4 does not induce alpha message the way TGF-beta does. These data confirm that TGF-beta by itself is an isotype switch factor for IgA. In addition, IL-4 and TGF-beta cause mIgA expression through different mechanisms. CH12.LX B cells serve as a valuable model to study the role of multiple signals required for mIgA expression and IgA secretion.  相似文献   

2.
Macrophage-derived TGF-beta1 induces IgA isotype expression   总被引:1,自引:0,他引:1  
Min KM  Kim PH 《Molecules and cells》2003,16(2):245-250
TGF-beta1 is a potent IgA isotype switching factor. However the cell population that generates the TGF-beta is not known. In this study, we examined the origin of the TGF-beta1 that is secreted by LPS-activated murine total spleen cell cultures and that is responsible for IgA isotype switching. Treatment with anti-TGFbeta1 antibody decreased IgA secretion 2 fold in these cultures and caused a 5-fold decrease in the number of IgA secreting cells. In Mphi-depleted spleen cell populations, this IgA response was markedly reduced and anti-TGFbeta1 antibody had no additional effect on IgA production. The inference that Mphi-derived TGF-beta1 is responsible for the isotype switching is supported by observations with the macrophage line, P388D1. LPS, particularly in the presence of IFN-gamma, induced P388D1 cells to secrete active TGF-beta1. The supernatant from such an activated P388D1 culture, in combination of IL-2, stimulated IgA secretion and this effect was abolished by anti-TGFbeta1 antibody.  相似文献   

3.
4.
Transforming growth factor-beta 1 is a costimulator for IgA production   总被引:9,自引:0,他引:9  
Transforming growth factor-beta 1 (TGF-beta 1) belongs to a family of polypeptides involved in the regulation of cell growth and differentiation. We have examined the ability of TGF-beta 1 to regulate isotype specific Ig secretion by murine spleen B cells. TGF-beta 1, in the presence of rIL-2, induced a synergistic 10-fold or greater increase in IgA secretion by LPS-stimulated spleen B cells. TGF-beta 1 alone had little to no effect on IgA secretion. In contrast, TGF-beta 1, with or without rIL-2, markedly inhibited IgG1 and IgM secretion under the same conditions. The costimulatory activity of TGF-beta 1 and rIL-2 on IgA secretion was seen in cultures of surface IgA negative B cells and was inhibited by anti-TGF-beta 1 antibody in a dose dependent manner. Vicia villosa agglutinin non-adherent Peyer's patch T cells, which secrete IL-2, also synergized with TGF-beta 1 and could substitute for the activity of LPS and rIL-2 on the IgA response. Finally, IL-5 added after 2 days of culture, but not at the beginning of culture, synergized with TGF-beta 1 on the IgA response. These studies indicate that TGF-beta 1 can interact with other lymphokines and selectively modulate the IgA response.  相似文献   

5.
6.
Goodrich ME  McGee DW 《Cytokine》1998,10(12):948-955
Intestinal epithelial cells (IEC) secrete a variety of cytokines and, because of their close proximity to B cells in the lamina propria, may affect local antibody production via these cytokines. However, studies have not yet addressed which and to what extent these IEC-derived cytokines may affect B cell antibody production. In this study, rat mesenteric lymph node B cells were cultured with culture supernatants from the rat IEC-6 intestinal epithelial cell line to determine their effect on immunoglobulin (Ig) secretion. Unstimulated IEC-6 cells were found to secrete sufficient levels of IL-6 to enhance IgA, IgG and IgM secretion by unstimulated B cells. However, culture of lipopolysaccharide (LPS)-stimulated B cells with the unstimulated IEC-6 supernatant resulted in an enhancement of IgA secretion while IgM secretion was significantly suppressed. Depletion of the IEC-6 supernatant using cytokine specific antibodies revealed that both interleukin 6 (IL-6) and transforming growth factor beta (TGF-beta) were responsible for the enhanced IgA secretion while TGF-beta suppressed IgM secretion. More importantly, culture supernatants from LPS stimulated IEC-6 cells contained enhanced levels of IL-6 which enhanced both IgG and IgA production and partially overcame the suppressive effect of TGF-beta on IgM secretion. These results suggest that intestinal epithelial cells may secrete IL-6 and TGF-beta to regulate local B cell antibody secretion and their effect may be highly dependent upon the activation state of the epithelial cells.  相似文献   

7.
The role of IL-5 in IgA B cell differentiation   总被引:20,自引:0,他引:20  
IL-5 enhances secretion of IgA by B cells. The stage of B cell differentiation at which IL-5 enhances IgA secretion and the mechanism by which it exerts this effect are unknown. We examined these issues by separating Peyer's patch (PP) B cells into membrane IgA (mIgA)-positive and mIgA-negative cells with panning or cell sorting. When LPS was used to activate these cells, mIgA-positive PP B cells were induced by IL-5 (either as crude T cell supernatant or rIL-5 to secrete large amounts of IgA. In contrast mIgA-negative PP B cells showed no significant amount of IgA secretion with IL-5. In addition, rIL-5 did not cause expression of mIgA by mIgM-bearing B cells. The mechanism involved in enhancement of IgA secretion was evaluated by utilizing an ELISPOT assay to quantitate IgA secreting cells. Both unsorted PP B cells and mIgA-positive PP B cells, when incubated with IL-5, showed an increase in the number of IgA-secreting cells that was proportional to the increase in total secreted IgA. However, LPS-activated PP mIgA-positive B cells, when incubated with rIL-5, showed no increase in proliferation, as measured by [3H]thymidine incorporation indicating that the increase in IgA-secreting cells after incubation with IL-5 occurred not as a result of proliferation but rather through promotion of terminal differentiation. Thus, IL-5 acts as a differentiation factor on B cells which have already undergone isotype switch to IgA B cells, promoting differentiation into IgA-secreting cells with resultant increased IgA secretion.  相似文献   

8.
Transforming growth factor beta (TGF-beta) and IL-5 have been shown to augment IgA production by LPS-stimulated murine B cells. We investigated the effect of TGF-beta on the expression of surface Ig-isotype and IL-5 receptor on LPS-stimulated B cells. TGF-beta increased the proportion of both surface IgA-positive (sIgA+) B cells and sIgG2b+ B cells and enhanced IgA and IgG2b production by LPS-stimulated B cells. TGF-beta synergized with IL-5 only for IgA production of the seven Ig-isotypes and in combination with IL-5 caused a significant increase in the proportion of sIgA+ B cells up to 17.4%. In contrast, IL-5 decreased the proportion of sIgG2b+ B cells and sIgG3+ B cells and inhibited the production of IgG2b and IgG3 by LPS-stimulated B cells. About 50% of sIgA+ cells induced by TGF-beta expressed IL-5 receptor. They secreted peak levels of IgA and seemed to maintain long viability in the presence of IL-5; whereas TGF-beta had the opposite effects on sIgA+ B cells and down-regulated the IL-5 receptor expression. These results indicate that TGF-beta increases the number of sIgA(+)- and IL-5 receptor-positive B cells which respond to IL-5 giving rise to IgA-secreting cells and also support the notions that TGF-beta preferentially induces switching to sIgA+ B cells and IL-5 induces the maturation of postswitch sIgA+ B cells into IgA-secreting cells in a stepwise fashion.  相似文献   

9.
10.
In these studies we utilized the Ag (SRBC)-reactive B cell line CH12LX to study isotype switching. CH12LX cells are a stable population of B cells mainly bearing membrane IgM (mIgM) (98 to 99%) with a small population of B cells bearing membrane IgA (mIgA) (1 to 2%). LPS induced a 5- to 10-fold increase in the secretion of both Ig, whereas a lymphokine-rich supernatant of D10 T cells induced a greater increase in the secretion of IgA than IgM. Analysis of the latter effect with recombinant lymphokines disclosed that rIL-4 induced an increase in the number of mIgA+ cells (6 to 15%) with minimal effect on IgA secretion, whereas IL-5 induced increased IgA secretion but had no effect on mIgA expression. The addition of both lymphokines induced increased mIgA expression and IgA secretion. No effect on mIgA expression or IgA secretion was seen with other lymphokines, including IL-1, IL-2, IL-3, IL-6, GM-CSF, and IFN-gamma. The rIL-4 effect on CH12LX cells represents true differentiation rather than selective proliferation for the following reasons: first, subclones of CH12LX cells respond to IL-4-containing T cell supernatant in the same fashion as the original cell line; second, culture of CH12LX cells with IL-4 causes the appearance of large numbers of dual-bearing mIgM/mIgA cells as well as mIgA+ cells and a dual-bearing mIgM/mIgA line was obtained by cloning CH12LX after stimulation with an IL-4-containing supernatant; third, sorted mIgA+ and mIgA- CH12LX cells had similar rates of proliferation in the presence or absence of IL-4. In further studies, it was found that IL-5 causes IgA secretion by mIgA+ but not mIgA- CH12LX cells indicating that it is acting as a post-isotype switch differentiation factor. These studies are consistent with the view that IL-4 and IL-5 act in a sequential fashion to induce IgA expression and secretion in CH12LX cells, IL-4 inducing differentiation of mIgM+ cells to mIgA+ cells and IL-5 enhancing the IgA secretion by the resulting mIgA-bearing cells.  相似文献   

11.
IL-5 has been shown to specifically enhance IgA secretion in LPS-stimulated splenic B cell cultures. Maximum enhancement of IgA in such cultures, however, requires IL-4 in addition to IL-5. Because the Peyer's patches (PP), compared with spleen and lymph nodes, are enriched for precursors of IgA-secreting cells, we tested whether IL-4 and IL-5 would have a more profound effect on IgA secretion by polyclonally stimulated PP cells than spleen cells. The combination of IL-4 and IL-5 causes a comparable enhancement of IgA secretion in both LPS-stimulated PP and splenic B cell cultures. The majority of IgA secreted in LPS-stimulated PP cell cultures is derived from the sIgA- population. Furthermore, the binding high level of peanut agglutinin, germinal center subpopulation of PP cells is essentially nonresponsive to LPS, even in the presence of lymphokines; the majority of secreted IgA in these cultures is derived from the binding low level of peanut agglutinin population. In contrast to LPS-stimulated cultures, PP B cells secrete considerably more IgA than splenic B cells when polyclonally stimulated by a clone of autoreactive T cells in the presence of IL-4 and IL-5. The majority of IgA made by T cell-stimulated PP cell cultures is derived from the sIgA+ population. In these cultures, sIgA- PP cells and spleen cells secrete comparable levels of IgA and other non-IgM isotypes suggesting that sIgA- PP B cells are similar to splenic B cells in their potential to switch to IgA. In T cell-stimulated cultures the majority of IgA as well as of all other isotypes is also derived from the nongerminal center, binding low level of peanut agglutinin population.  相似文献   

12.
Transforming growth factor beta 1 (TGF beta 1) has important effects on expression of the IgA isotype. TGF beta 1 alone, or in combination with IL-5 or IL-2 increases IgA secretion by populations of LPS-activated surface IgA negative (sIgA-) spleen B cells, while concurrently decreasing IgM and IgG secretion. The present study demonstrates the activity of TGF beta 1 as an IgA isotype switch factor at the clonal level. Stimulation of LPS-activated sIgA- spleen B cell populations with TGF beta 1, or a combination of TGF beta 1 and IL-2, resulted in a significant increase in total numbers of IgA secreting cells, and this increase ultimately was paralleled by an increase in total IgA secretion. Using limiting dilution analysis, TGF beta 1 was shown to increase the frequency of IgA secreting B cell clones, by approximately 20-fold. This was not accompanied by increased numbers of IgA secreting cells/clone. In contrast, IL-2 does not have activity as an IgA switch factor, but does increase IgA production by B cells already committed to secrete that isotype. Cell cycle inhibitors such as thymidine and hydroxyurea also selectively increased numbers of IgA secreting cells and total IgA secretion among populations of LPS-activated sIgA- spleen B cells. This suggests the IgA enhancing activity of TGF beta 1 may, in part, be related to its ability to inhibit cell growth.  相似文献   

13.
The effects of IL-4 and IL-5 on the production of Ig of different isotypes was investigated. We compared B cells from spleen and from Peyer's patches either stimulated with LPS or without added polyclonal stimulation. We also compared high density (small) and low density (large) B cells. The effect of lymphokines depended on the size and source of the B cells as well as on whether LPS was added. As expected, small B cells from either lymphoid compartment responded to LPS alone and IL-4 suppressed IgM and IgG3 production and enhanced IgG1. In contrast, when large B cells were examined, the suppressive effects of IL-4 were much less apparent but the enhancement of IgG1 was still marked. IL-5 alone had only minimal effects in LPS-stimulated cultures but the combination of IL-4 plus IL-5 appeared to overcome much of the IL-4-mediated suppression of IgM, and IgA production was enhanced. In the absence of LPS, a quite different profile is seen. First, small B cells make little if any response. Second, there is dramatic synergy between IL-4 and IL-5 in the response of large B cells, which is independent of isotype. Third, IL-4 does not suppress any isotype in the absence of LPS. Fourth, IL-4 plus IL-5 stimulate large Peyer's patch B cells to produce 10 times more IgA but three times less IgM than large spleen B cells. Fifth, Th2 cells directly stimulate both large and small B cells.  相似文献   

14.
Mouse splenic marginal zone (MZ) B cells and B1 B cells enriched in the peritoneal cavity respond preferentially to T cell-independent Ags compared with follicular (FO)/B2 B cells. Despite the differential responses of B cell subsets to various stimuli, and despite the need for multiple stimuli to induce IgA class switching, the relative contribution of B cell subpopulations to IgA production is unknown. By culturing purified B cell populations, we find that MZ and peritoneal B1 cells switch more readily to IgA than do splenic FO or peritoneal B2 cells in BLyS/LPS/TGF-beta. Addition of IL-4, IL-5, and anti-IgD dextran to the cultures enhances IgA switching in FO/B2 and MZ B cells to a similar frequency, but this treatment suppresses IgA class switching in B1 cells. Thus, IgA switching differs among purified B cell subsets, suggesting that individual B cell populations could contribute differentially to IgA expression in vivo, depending on available stimuli.  相似文献   

15.
Considerable evidence suggests that the high frequency of B cells committed to the IgA isotype in Peyer's patches is regulated by T lymphocytes. To understand more accurately the mechanism of this immunoregulation, an autoreactive T cell line from Peyer's patches was generated by culturing L3T4+ Peyer's patches T cells with syngeneic B cell blasts. The resulting T cell line, designated PT-1, and a clone derived from this line, PT-1.14, stimulated immunoglobulin secretion in spleen B cells with a preferential enhancement of IgA and IgG1 isotypes. Supernatant derived from concanavalin A-stimulated PT-1 or PT-1.14 cells could also enhance IgA secretion if spleen B cells were preactivated with lipopolysaccharide. Peyer's patches T cell supernatant did not contain IgA-specific binding factors. PT-1 supernatant scored positive in lymphokine assays for interleukin (IL)-2, IL-4 (B cell stimulatory factor 1), IL-5 (B cell growth factor II), and interferon-gamma, whereas PT-1.14 supernatant was positive for IL-4 and IL-5 and negative for IL-2 and interferon-gamma. Only IL-5 enhanced IgA secretion in lipopolysaccharide-activated B cells and this response was increased two- to three-fold by IL-4. These results suggest that the type 2 T helper subset which produces both IL-5 and IL-4 plays a primary role in regulating IgA expression.  相似文献   

16.
17.
Recent studies have shown that purified IL-5 from T cell lines and clones enhances IgA synthesis in LPS-triggered splenic B cell cultures, and that this effect is augmented by IL-4. In this study we have examined the ability of rIL-5 and rIL-4 to support spontaneous Ig synthesis in normal Peyer's patch (PP) B cell cultures. The rIL-4 supported proliferation of the HT-2 and in vivo adapted BCL-1 cell lines, increased Ia expression on normal spleen B cells, co-stimulated splenic B cell proliferation in the presence of anti-mu and enhanced IgG1 synthesis in LPS triggered splenic B cell cultures. The rIL-5 supported BCL-1 proliferation, co-stimulated splenic B cell proliferation in the presence of dextran sulfate, and increased IgA synthesis in LPS-stimulated splenic B cell cultures. Markedly enhanced IgA responses occurred in PP B cell, but not splenic B cell cultures supplemented with rIL-5 in the absence of an added B cell trigger. However, rIL-4 alone did not enhance IgA synthesis or increase the IgA synthesis of PP B cell cultures stimulated with rIL-5. The rIL-5 receptive PP B cells were present in the blast cell subpopulation, inasmuch as a low density fraction isolated on Percoll gradients accounted for the enhanced IgA synthesis. Further, cell cycle analysis of whole PP B cells using propidium iodide in conjunction with staining for surface B220, demonstrated that approximately 12 to 16% of the B cells were in the S and G2/M stages of cell cycle, the remainder being in Go + G1. The surface IgM+ B cells were predominantly in Go + G1, whereas the sIgA+ B cell subpopulation was enriched for cells in the S and G2/M compartments. The PP B cell subset responsible for enhanced IgA synthesis in the presence of rIL-5 was sIgA-positive because FACS-depletion of the sIgA+ B cells resulted in the total loss of rIL-5 enhanced IgA synthesis. Further, when PP B cells were enriched for sIgA+ B cells by cell sorting, these cells responded to rIL-5 with increased IgA synthesis in a dose-dependent manner. When the actual numbers of IgA secreting cells were assessed in PP B cell cultures with supplemental rIL-5, no significant increase in total IgA-producing cells was noted when compared with B cells cultured without rIL-5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Smad2 is a member of the intracellular mediators that transduce signals from TGF-beta receptors and activin receptors. Targeted inactivation of Smad2 in mice leads to early lethality before gastrulation. It was shown previously that TGF-betaRII deficiency in vivo leads to defects in B cell homeostasis, Ag responsiveness, and IgA class switch recombination of B cells. To investigate the importance of Smad2-mediated signaling in B lymphocytes, we generated a B cell-specific inactivation of Smad2 in mice (bSmad2(-/-)). bSmad2(-/-) mice had normal B cell numbers in the spleen but showed a reduced population of marginal zone B cells. In contrast, B cells in Peyer's patches and peritoneal B-1a cells of bSmad2(-/-) mice were increased in numbers. bSmad2(-/-) mice showed a reduced number of surface-IgA(+) B cells and of IgA-secreting cells in Peyer's patches, decreased levels of IgA in serum, and, after immunization with a T cell-dependent Ag, a reduced IgA response. Class switch recombination to IgA was impaired in Smad2-deficient B cells, when stimulated in vitro with LPS in the presence of TGF-beta. The growth-inhibitory effects of TGF-beta in LPS-stimulated B cells were not affected in Smad2-deficient B cells. In summary, our data indicate a crucial role of Smad2 in mediating signals for the TGF-beta-directed class switch to IgA and the induction of IgA responses in vivo. Other B cell functions like growth-inhibitory signaling, which are known to be regulated by signals via the TGF-betaR, are not affected in Smad2-deficient B cells.  相似文献   

19.
Transforming growth factor (TGF)-beta added to cultures of highly purified human splenic B cells induced high levels of IgA synthesis in the presence of PWM and activated cloned CD4+ T cells. TGF-beta had no effect on IgM or IgG production. The induction of IgA synthesis by TGF-beta reflected IgA switching, because a strong induction of IgA production was also observed, when sIgA- B cells were cocultured with cloned activated CD4+ T cells in the presence of pokeweed mitogen. Resting CD4+ T cell clones or activated CD8+, TCR-gamma delta + CD4-,CD8- T cell clones failed to provide the co-stimulatory signal that in addition to TGF-beta and pokeweed mitogen was required for induction of IgA switching and IgA synthesis. mAb against CD4 or class II MHC molecules inhibited TGF-beta induced IgA synthesis, indicating that CD4-class II MHC interactions are required for productive T-B cell contacts resulting in IgA production. In contrast, anti-LFA-1, anti-CD2, and anti-class I MHC mAb were ineffective. TGF-beta failed to induce IgA synthesis by sIgA+ B cells under these culture conditions. Interestingly, induction of IgA production by sIgA- B cells required neutralization of TGF-beta activity by addition of the anti-TGF-beta mAb 1D11.1G 24 h after onset of the cultures. IgA production was prevented when the anti-TGF-beta mAb was added at the start of the cultures, indicating the specificity of the reaction. IgA synthesis was completely suppressed when TGF-beta was present during the total culture period of 11 days. These findings indicate that TGF-beta can act as a specific switch factor for IgA, provided it is only present at early stages of the cultures.  相似文献   

20.
Paired immunofluorescent staining with antibodies specific for the major isotypes of mouse immunoglobulin was used to study the ontogenetic expression of diversity of cell surface immunoglobulin. The first B lymphocytes to emerge, derived from cytoplasmic IgM+ precursors, express sIgM exclusively. Between birth and 3 days of age separate populations of sIgM+ B lymphocyte acquire a second isotype: sIgD, one of the subclasses of sIgG, or sIgA. At 3 days, all splenic B lymphocytes that bear sIg or sIgA also express sIgM, but virtually none stain for sIgD. By 7 days, a substantial porportion of sIgG+ or sIgA+ lymphocytes in spleen and most of those in lymph node express both sIgM ans sIgD. Anti-mu antibody treatment from birth prevented development of B lymphocytes expressing any isotype. These observations suggest that the immature sIgM+ B lymphocyte is the pivotal cell in the generation of the different sublines of B cells and that sIgD ig or IgA. The frequency of lymphocytes bearing only sIgG or sIgA is higher in old than in young mice, suggesting that sIgD and sIgM may be lost after stimulation by antigens. The occurrence of a nearly identical distribution of sIg isotypes on B lymphocytes from athymic, pathogen-free mice suggests that primary expression of isotype diversity does not require T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号