首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abundance and community composition of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the surface sediments of 2 different zones (Meiliang Bay and Eastern Lake Taihu) of Lake Taihu were investigated using real-time quantitative polymerase chain reaction and clone libraries. The amoA gene copy numbers in the surface sediment of Meiliang Bay ranged from 4.91?× 10(5) to 8.65?× 10(6) copies/g dry sediment for the archaeal amoA gene and from 3.74?× 10(4) to 3.86?× 10(5) copies/g dry sediment for the bacterial amoA gene, which were significantly higher than those of Eastern Lake Taihu (P?< 0.05). Concentrations of ammonia (NH(4)(+)), total nitrogen, organic matter, and pH of the sediments exhibited significantly negative correlations with the abundance of ammonia-oxidizing archaea or ammonia-oxidizing bacteria (P?< 0.05 or P?< 0.01, respectively). The potential nitrification rates show remarkable correlations with the copy numbers of the archaeal amoA gene. Diversity of the archaeal amoA gene in Eastern Lake Taihu was significantly higher than that of Meiliang Bay, whereas the bacterial amoA gene diversity was comparable for the 2 lake zones. The data obtained in this study would be useful to elucidate the role of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.  相似文献   

2.
We investigated the contribution of the pulmonary interstitial space to the removal of alveolar fluid and solute. We prepared anesthetized sheep for the collection of lung lymph. A balloon-tipped catheter was advanced into a lower lung lobe, and 20 ml Ringer lactate solution (RL) were instilled in one group. Other groups received 20 ml RL with 4 mg/ml Evans blue dye (EB) or 10 micrograms/kg phorbol myristate acetate (PMA) or both. Instillation of 20 ml RL and EB resulted in an increase in lymph flow over RL alone, presumably by an osmotic mechanism. After 4 h, small perivascular fluid cuffs, which contained little EB, were present, and 1.9% of the instilled EB was removed by the lymphatics. An average of 9.2 ml of excess water remained in the lung. Instillation of RL, EB, and PMA resulted in an increase in lymph flow and large perivascular fluid cuffs, which contained large amounts of EB. Lymphatic removal of the instilled EB accounted for 1.2% of the total amount instilled. An average of 19.1 ml water was present in the lung after 4 h. We conclude that alveolar instillation of PMA results in epithelial and endothelial membrane injury and that when lung injury is present interstitial fluid reservoirs may be important sites of alveolar fluid accumulation and important routes of fluid removal from the air space.  相似文献   

3.
To understand the distribution and diversity of archaea in Chinese soils, the archaeal communities in a series of topsoils and soil profiles were investigated using quantitative PCR, T-RFLP combining sequencing methods. Archaeal 16S rRNA gene copy numbers, ranging from 4.96?×?10(6) to 1.30?×?10(8) copies?g(-1) dry soil, were positively correlated with soil pH, organic carbon and total nitrogen in the topsoils. In the soil profiles, archaeal abundance was positively correlated with soil pH but negatively with depth profile. The relative abundance of archaea in the prokaryotes (sum of bacteria and archaea) ranged from 0.20% to 9.26% and tended to increase along the depth profile. T-RFLP and phylogenetic analyses revealed that the structure of archaeal communities in cinnamon soils, brown soils, and fluvo-aquic soils was similar and dominated by Crenarchaeota group 1.1b and 1.1a. These were different from those in red soils, which were dominated by Crenarchaeota group 1.3 and 1.1c. Canonical correspondence analysis indicated that the archaeal community was primarily influenced by soil pH.  相似文献   

4.
Cardiogenic pulmonary edema results from increased hydrostatic pressures across the pulmonary circulation. We studied active Na(+) transport and alveolar fluid reabsorption in isolated perfused rat lungs exposed to increasing levels of left atrial pressure (LAP; 0--20 cmH(2)O) for 60 min. Active Na(+) transport and fluid reabsorption did not change when LAP was increased to 5 and 10 cmH(2)O compared with that in the control group (0 cmH(2)O; 0.50 +/- 0.02 ml/h). However, alveolar fluid reabsorption decreased by approximately 50% in rat lungs in which the LAP was raised to 15 cmH(2)O (0.25 +/- 0.03 ml/h). The passive movement of small solutes ((22)Na(+) and [(3)H]mannitol) and large solutes (FITC-albumin) increased progressively in rats exposed to higher LAP. There was no significant edema in lungs with a LAP of 15 cmH(2)O when all active Na(+) transport was inhibited by hypothermia or amiloride (10(-4) M) and ouabain (5 x 10(-4) M). However, when LAP was increased to 20 cmH(2)O, there was a significant influx of fluid (-0.69 +/- 0.10 ml/h), precluding the ability to assess the rate of fluid reabsorption. In additional studies, LAP was decreased from 15 to 0 cmH(2)O in the second and third hours of the experimental protocol, which resulted in normalization of lung permeability to solutes and alveolar fluid reabsorption. These data suggest that in an increased LAP model, the changes in clearance and permeability are transient, reversible, and directly related to high pulmonary circulation pressures.  相似文献   

5.
Hypusination is an essential posttranslational modification unique to archaeal and eukaryotic protein synthesis initiation factor 5A (aIF5A and eIF5A, respectively). We have investigated the effect of the efficient hypusination inhibitor N(1)-guanyl-1,7-diaminoheptane (GC(7)) on four archaeal and one bacterial species. We found that (i) archaea are sensitive to GC(7), whereas the bacterium Escherichia coli is not, (ii) GC(7) causes rapid and reversible arrest of growth of the archaeon Sulfolobus acidocaldarius, and (iii) the growth arrest is accompanied by a specific reversible arrest of the cell cycle prior to cell division. Our findings establish a link between hypusination and sustained growth of archaea and thereby provide the framework to study molecular details of archaeal cell cycle in connection with in vivo functions of hypusine and of aIF5A and eIF5A.  相似文献   

6.
The regulators of G protein signaling (RGS) protein superfamily negatively controls G protein-coupled receptor signal transduction pathways. RGS16 is enriched in activated/effector T lymphocytes. In this paper, we show that RGS16 constrains pulmonary inflammation by regulating chemokine-induced T cell trafficking in response to challenge with Schistosoma mansoni. Naive Rgs16(-/-) mice were "primed" for inflammation by accumulation of CCR10(+) T cells in the lung. Upon pathogen exposure, these mice developed more robust granulomatous lung fibrosis than wild-type counterparts. Distinct Th2 or putative Th17 subsets expressing CCR4 or CCR10 accumulated more rapidly in Rgs16(-/-) lungs following challenge and produced proinflammatory cytokines IL-13 and IL-17B. CCR4(+)Rgs16(-/-) Th2 cells migrated excessively to CCL17 and localized aberrantly in challenged lungs. T lymphocytes were partially excluded from lung granulomas in Rgs16(-/-) mice, instead forming peribronchial/perivascular aggregates. Thus, RGS16-mediated confinement of T cells to Schistosome granulomas mitigates widespread cytokine-mediated pulmonary inflammation.  相似文献   

7.
基于高通量测序研究青藏高原茶卡盐湖微生物多样性   总被引:6,自引:0,他引:6  
【目的】茶卡盐湖(Chaka Salt Lake,CSL)是青藏高原有名的天然结晶盐湖,具有独特的石盐盐湖矿床,盛产青盐。盐湖卤水环境中存在丰富的嗜盐菌资源和潜在的新种,细菌和古菌的群落结构特征和物种多样性尚不明确。【方法】采用Illumina高通量测序平台对茶卡盐湖水样和底泥混合物中的细菌和古菌群落进行16S r RNA基因(V3-V5区)高通量测序,检测4个样本的群落结构差异和微生物多样性。【结果】获得细菌和古菌总有效序列分别为117 192和110 571条。结果分析表明细菌和古菌的物种注释(Operational taxonomic unit,OTU)数目分别为421和317,获得分类地位明确的细菌种类为14门28纲170属,古菌为5门4纲34属。细菌的优势类群是厚壁菌门(Firmicutes),所占比例为68.37%,其次为变形菌门Proteobacteria(20.49%);优势种属依次为芽孢杆菌属Bacillus(41.94%)、海洋芽孢杆菌属Oceanobacillus(8.03%)、假单胞菌属Pseudomonas(7.67%)、盐厌氧菌属Halanaerobium(7.42%)和乳球菌属Lactococcus(7.38%);古菌的优势类群以广古菌门(Euryarchaeota)盐杆菌纲(Halobacteria)为主,优势菌是Halonotius(17.21%)和盐红菌属Halorubrum(16.23%)。【结论】揭示了茶卡盐湖中细菌和古菌的群落结构及物种多样性,为嗜盐菌的开发及后续微生物资源的挖掘提供了理论依据。  相似文献   

8.
9.
This study compared pathophysiological and biochemical indexes of acute lung injury in a saline-lavaged rabbit model with different ventilatory strategies: a control group consisting of moderate tidal volume (V(T)) (10-12 ml/kg) and low positive end-expiratory pressure (PEEP) (4-5 cmH(2)O); and three protective groups: 1) low V(T) (5-6 ml/kg) high PEEP, 2-3 cmH(2)O greater than the lower inflection point; 2) low V(T) (5-6 ml/kg), high PEEP (8-10 cmH(2)O); and 3) high-frequency oscillatory ventilation (HFOV). The strategy using PEEP > inflection point resulted in hypotension and barotrauma. HFOV attenuated the decrease in pulmonary compliance, the lung inflammation assessed by polymorphonuclear leukocyte infiltration and tumor necrosis factor-alpha concentration in the alveolar space, and pathological changes of the small airways and alveoli. Conventional mechanical ventilation using lung protection strategies (low V(T) high PEEP) only attenuated the decrease in oxygenation and pulmonary compliance. Therefore, HFOV may be a preferable option as a lung protection strategy.  相似文献   

10.
The paper deals with the microbiological characterization of water-saturated horizons in permafrost soils (cryopegs) found on the Varandei Peninsula (Barents Sea coast), 4-20 m deep. The total quantity of bacteria in the water of cryopegs was 3.5 x 10(8) cells/ml. The population of cultivated aerobic heterotrophic bacteria was 3-4 x 10(7) cells/ml and the number of anaerobic heterotrophic bacteria varied from 10(2) to 10(5) cells/ml depending on cultivation temperature and salinity. Sulfate-reducing bacteria and methanogenic archaea were found as hundreds and tens of cells per ml of water, respectively. A pure culture of a sulfate-reducing strain B15 was isolated from borehole 21 and characterized. Phylogenetic analysis has shown that the new bacterium is a member of the genus Desulfovibrio with Desulfovibrio mexicanus as its closest relative (96.5% similarity). However, the significant phenotypic differences suggest that strain B15 is a new species of sulfate-reducing bacteria.  相似文献   

11.
研究细根不同生长时期根际土壤古菌群落组成结构差异,对深入了解林木细根与土壤微生物互作关系具有重要理论意义.依据细根表面颜色,采集杨树一级细根不同生长时期(白色新生根、黄色成熟根、褐色衰老根)根际土壤并提取微生物总DNA,采用特异性引物对古菌16S rDNA V4-V5区进行扩增,利用Illumina MiSeq平台进行古菌高通量测序分析.结果表明: 新生根和衰老根根际土壤古菌群落操作分类单元(OTU)丰富度相似,而成熟根根际土壤古菌群落OTU数量较少.新生根和成熟根根际土壤共同含有134个OTU;成熟根和衰老根根际土壤共同含有87个OTU,新生根和衰老根根际土壤共同拥有90个OTU.α多样性分析表明,成熟根根际土壤古菌群落Chao1指数和ACE指数显著低于新生根和衰老根根际土壤,而衰老根根际土壤古菌群落Simpson指数和Shannon指数显著低于新生根和成熟根根际土壤.PERMANOVA分析表明,新生根和衰老根根际土壤古菌群落组成有显著差异.物种注释显示,杨树根际土壤共包含12个古菌属,其中新生根5个、成熟根10个、衰老根6个.β多样性指数表明,杨树根际土壤古菌群落相似度随着细根的生长逐渐下降,不同生长阶段细根根际土壤的古菌群落结构有较大差异.其中,占绝对优势的古菌为氨氧化古菌Candidatus_Nitrososphaera,其相对丰度超过70%.且随细根生长发育,该类古菌在根际土壤中的丰度呈现上升趋势,表明其可能与细根的生长发育关系密切.  相似文献   

12.
During hydrostatic pulmonary edema, active Na(+) transport and alveolar fluid reabsorption are decreased. Dopamine (DA) and isoproterenol (ISO) have been shown to increase active Na(+) transport in rat lungs by upregulating Na(+)-K(+)-ATPase in the alveolar epithelium. We studied the effects of DA and ISO in isolated rat lungs with increased left atrial pressure (Pla = 15 cmH(2)O) compared with control rats with normal Pla (Pla = 0). Alveolar fluid reabsorption decreased from control value of 0.51 +/- 0.02 to 0.27 +/- 0.02 ml/h when Pla was increased to 15 cmH(2)O (P < 0.001). DA and ISO increased the alveolar fluid reabsorption back to control levels. Treatment with the D(1) antagonist SCH-23390 inhibited the stimulatory effects of DA (0.30 +/- 0.02 ml/h), whereas fenoldopam, a specific D(1)-receptor agonist, increased alveolar fluid reabsorption in rats exposed to Pla of 15 cmH(2)O (0.47 +/- 0.04 ml/h). Propranolol, a beta-adrenergic-receptor antagonist, blocked the stimulatory effects of ISO; however, it did not affect alveolar fluid reabsorption in control or DA-treated rats. Amiloride (a Na(+) channel blocker) and ouabain (a Na(+)-K(+)-ATPase inhibitor), either alone or together, inhibited the stimulatory effects of DA. Colchicine, which disrupts the cellular microtubular transport of ion-transporting proteins to the plasma membrane, inhibited the stimulatory effects of DA, whereas the isomer beta-lumicolchicine did not block the stimulatory effects of DA. These data suggest that DA and ISO increase alveolar fluid reabsorption in a model of increased Pla by regulating active Na(+) transport in rat alveolar epithelium. The effects of DA and ISO are mediated by the activation of dopaminergic D(1) receptors and the beta-adrenergic receptors, respectively.  相似文献   

13.
The lung is known to be particularly susceptible to complement-mediated injury. Both C5a and the membrane attack complex (MAC), which is formed by the terminal components of complement (C5b-C9), can cause acute pulmonary distress in nontransplanted lungs. We used C6-deficient rats to investigate whether MAC causes injury to lung allografts. PVG.R8 lungs were transplanted orthotopically to MHC class I-incompatible PVG.1U recipients. Allografts from C6-sufficient (C6(+)) donors to C6(+) recipients were rejected with an intense vascular infiltration and diffuse alveolar hemorrhage 7 days after transplantation (n = 5). Ab and complement (C3d) deposition was accompanied by extensive vascular endothelial injury and intravascular release of von Willebrand factor. In contrast, lung allografts from C6-deficient (C6(-)) donors to C6(-) recipients survived 13-17 days (n = 5). In the absence of C6, perivascular mononuclear infiltrates of ED1(+) macrophages and CD8(+) T lymphocytes were present 7 days after transplantation, but vascular endothelial cells were quiescent, with minimal von Willebrand factor release and no evidence of alveolar hemorrhage or edema. Lung allografts were performed from C6(-) donors to C6(+) recipients (n = 5) and from C6(+) donors to C6(-) recipients (n = 5) to separate the effects of systemic and local C6 production. Lungs transplanted from C6(+) donors to C6(-) recipients had increased alveolar macrophages and capillary injury. C6 production by lung allografts was demonstrated at the mRNA and protein levels. These results demonstrate that MAC causes vascular injury in lung allografts and that the location of injury is dependent on the source of C6.  相似文献   

14.
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with high K+ (56 mM) and nicotine (10 microM), a large and transient increase in [3H]inositol 1,3,4,5,6-pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s and then declined to the basal level at 2 min. The time course of accumulation of InsP5 was parallel to that of [3H]inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Angiotensin II (Ang II) (10 microM) rapidly accumulated InsP5, but the level was sustained for 2 min. With a slower time course and a lesser amount than InsP5, high K+, nicotine, and Ang II caused an accumulation of [3H]inositol 1,3,4,5-tetrakisphosphate and [3H]inositol hexakisphosphate. Veratridine (100 microM), maitotoxin (10 ng/ml), ATP (30 microM), platelet-derived growth factor (10 ng/ml), and endothelin (10 ng/ml) also induced the InsP5 accumulation. High K+, nicotine, veratridine, and maitotoxin induced an increase in 45Ca2+ uptake, whereas Ang II, ATP, platelet-derived growth factor, and endothelin did not cause 45Ca2+ uptake. Nifedipine, a calcium channel antagonist, inhibited the high K(+)-induced InsP5 accumulation but failed to affect the Ang II-induced InsP5 accumulation. In an EGTA-containing and Ca2(+)-depleted medium, the high K(+)-induced InsP5 accumulation was completely inhibited, whereas the InsP5 accumulation induced by Ang II was not significantly inhibited. 12-O-tetradecanoylphorbol-13-acetate inhibited partially the Ang II-induced InsP5 accumulation but failed to inhibit the high K(+)-induced accumulation. In those experiments, the changes of InsP5 accumulation were closely correlated to those of Ins(1,4,5)P3. In the chromaffin cell homogenate, [3H] Ins(1,4,5)P3 was converted eventually to [3H]InsP5 through [3H]inositol 1,3,4,6-tetrakisphosphate. Taken together, the above results suggest that InsP5 is rapidly formed by a variety of stimulants and that the formation of InsP5 may occur through two mechanisms, i.e. Ca2+ uptake-dependent and Ca2+ uptake-independent ones in cultured adrenal chromaffin cells.  相似文献   

15.
We have studied the effects of aerosolized substance P (SP) in guinea pigs with reference to lung resistance and dynamic compliance changes and their recovery after hyperinflation. In addition, we have examined the concomitant formation of airway microvascular leakage and lung edema. Increasing breaths of SP (1.5 mg/ml, 1.1 mM), methacholine (0.15 mg/ml, 0.76 mM), or 0.9% saline were administered to tracheostomized and mechanically ventilated guinea pigs. Lung resistance (RL) increased dose dependently with a maximum effect of 963 +/- 85% of baseline values (mean +/- SE) after SP (60 breaths) and 1,388 +/- 357% after methacholine (60 breaths). After repeated hyperinflations, methacholine-treated animals returned to baseline, but after SP, mean RL was still raised (292 +/- 37%; P less than 0.005). Airway microvascular leakage, measured by extravasation of Evans Blue dye, occurred in the brain bronchi and intrapulmonary airways after SP but not after methacholine. There was a significant correlation between RL after hyperinflation and Evans Blue dye extravasation in intrapulmonary airways (distal: r = 0.89, P less than 0.005; proximal: r = 0.85, P less than 0.01). Examination of frozen sections for peribronchial and perivascular cuffs of edema and for alveolar flooding showed significant degrees of pulmonary edema for animals treated with SP compared with those treated with methacholine or saline. We conclude that the inability of hyperinflation to fully reverse changes in RL after SP may be due to the formation of both airway and pulmonary edema, which may also contribute to the deterioration in RL.  相似文献   

16.
Two cellulose-fermenting methanogenic enrichment cultures originating from rice soil, one at 15 degrees C with Methanosaeta and the other at 30 degrees C with Methanosarcina as the dominant acetoclastic methanogen, both degraded cellulose anaerobically via propionate, acetate and H2 to CH4. The degradation was a two-stage process, with CH4 production mainly from H2/CO2 and accumulation of acetate and propionate during the first, and methanogenic consumption of acetate during the second stage. Aeration stress of 12, 24, 36 and 76 h duration was applied to these microbial communities during both stages of cellulose degradation. The longer the aeration stress, the stronger the inhibition of CH4 production at both 30 degrees C and 15 degrees C. The 72 h stressed culture at 30 degrees C did not fully recover. Aeration stress at 30 degrees C exerted a more pronounced effect, but lasted for a shorter time than that at 15 degrees C. The aeration stress was especially effective during the second stage of fermentation, when consumption of acetate (and to a lesser extent propionate) was also increasingly inhibited as the duration of the stress increased. The patterns of CH4 production and metabolite accumulation were consistent with changes observed in the methanogenic archaeal community structure. Fluorescence in situ hybridization showed that the total microbial community at the beginning consisted of about 4% and 10% archaea, which increased to about 50% and 30% during the second stage of cellulose degradation at 30 degrees C and 15 degrees C respectively. Methanosarcina and Methanosaeta species became the dominant archaea at 30 degrees C and 15 degrees C respectively. The first round of aeration stress mainly reduced the non-Methanosarcina archaea (30 degrees C) and the non-Methanosaeta archaea (15 degrees C). Aeration stress also retarded the growth of Methanosarcina and Methanosaeta at 30 degrees C and 15 degrees C respectively. The longer the stress, the lower was the percentage of Methanosarcina cells to total microbial cells after the first stress at 30 degrees C. A later aeration stress decreased the population of Methanosarcina (at 30 degrees C) in relation to the duration of stress, so that non-Methanosarcina archaea became dominant. Hence, aeration stress affected the acetotrophic methanogens more than the hydrogenotrophic ones, thus explaining the metabolism of the intermediates of cellulose degradation under the different incubation conditions.  相似文献   

17.
The antiarrhythmic amiodarone (AM) and its metabolite desethylamiodarone (Des) are known to cause AM-induced pulmonary toxicity, but the mechanisms underlying this disorder remain unclear. We hypothesized that AM might cause AM-induced pulmonary toxicity in part through the induction of apoptosis or necrosis in alveolar epithelial cells (AECs). Two models of type II pneumocytes, the human AEC-derived A549 cell line and primary AECs isolated from adult Wistar rats, were incubated with AM or Des for 20 h. Apoptotic cells were determined by morphological assessment of nuclear fragmentation with propidium iodide on ethanol-fixed cells. Necrotic cells were quantitated by loss of dye exclusion. Both AM and Des caused dose-dependent necrosis starting at 2.5 and 0.1 microg/ml, respectively, in primary rat AECs and at 10 and 5 microg/ml in subconfluent A549 cells (P < 0.05 and P < 0.01, respectively). AM and Des also induced dose-dependent apoptosis beginning at 2.5 microg/ml in the primary AECs (P < 0.05 for both compounds) and at 10 and 5 microg/ml, respectively, in the A549 cell line (P < 0.01). The two compounds also caused significant net cell loss (up to 80% over 20 h of incubation) by either cell type at drug concentrations near or below the therapeutic serum concentration for AM. The cell loss was not due to detachment but was blocked by the broad-spectrum caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone. Furthermore, the angiotensin-converting enzyme inhibitor captopril (500 ng/ml) and the angiotensin-receptor antagonist saralasin (50 microg/ml) significantly inhibited both the induction of apoptosis and net cell loss in response to AM. These results are consistent with recent work from this laboratory demonstrating potent inhibition of apoptosis in human AECs by captopril (Uhal BD, Gidea C, Bargout R, Bifero A, Ibarra-Sunga O, Papp M, Flynn K, and Filippatos G. Am J Physiol Lung Cell Mol Physiol 275: L1013-L1017, 1998). They also suggested that the accumulation of AM and/or its primary metabolite Des in lung tissue may induce cytotoxicity of AECs that might be inhibitable by angiotensin-converting enzyme inhibitors or other antagonists of the renin-angiotensin system.  相似文献   

18.
Environmental pollutants inducing oxidative stress stimulate chronic inflammatory responses in the lung leading to pulmonary tissue dysfunction. In response to oxidative stress, alveolar macrophages produce both reactive oxygen species and reactive nitrogen species, which induce the expression of a wide variety of immune-response genes. We found that a prolonged exposure of alveolar macrophages to a nonlethal dose (8 microg/ml) of JP-8, the kerosene-based hydrocarbon jet fuel, induced the persistent expression of IL-1, iNOS, and COX-2, as well as cell adhesion molecules (ICAM-1 and VCAM-1). Because poly(ADP-ribose) polymerase (PARP-1), a coactivator of NF-kappaB, regulates inflammatory responses and associated disorders in the airways, we determined whether JP-8 induces the poly(ADP-ribosyl)ation automodification of PARP-1 in alveolar macrophages. We observed that PARP-1 is activated in a time-dependent manner, which was temporally coincident with the prolonged activation of NF-kappaB and with the augmented expression of the proinflammatory factors described above. The 4 microg/ml dilution of JP-8 also increased the activity of PARP-1 as well as the expression of iNOS and COX-2, indicating that lower doses of JP-8 also affect the regulation of proinflammatory factors in pulmonary macrophages. Together, these results demonstrate that an extensive induction of PARP-1 might coordinate the persistent expression of proinflammatory mediators in alveolar macrophages activated by aromatic hydrocarbons that can result in lung injury from occupational exposure.  相似文献   

19.
Invited review: lung edema clearance: role of Na(+)-K(+)-ATPase.   总被引:4,自引:0,他引:4  
Acute hypoxemic respiratory failure is a consequence of edema accumulation due to elevation of pulmonary capillary pressures and/or increases in permeability of the alveolocapillary barrier. It has been recognized that lung edema clearance is distinct from edema accumulation and is largely effected by active Na(+) transport out of the alveoli rather than reversal of the Starling forces, which control liquid flux from the pulmonary circulation into the alveolus. The alveolar epithelial Na(+)-K(+)-ATPase has an important role in regulating cell integrity and homeostasis. In the last 15 yr, Na(+)-K(+)-ATPase has been localized to the alveolar epithelium and its contribution to lung edema clearance has been appreciated. The importance of the alveolar epithelial Na(+)-K(+)-ATPase function is reflected in the changes in the lung's ability to clear edema when the Na(+)-K(+)-ATPase is inhibited or increased. An important focus of the ongoing research is the study of the mechanisms of Na(+)-K(+)-ATPase regulation in the alveolar epithelium during lung injury and how to accelerate lung edema clearance by modulating Na(+)-K(+)-ATPase activity.  相似文献   

20.
Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号