首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of high speed cinefilm have shown that amphioxus swims either forward or backward with undulatory movement generated at the leading end, the wave of displacement passing along the body with increasing amplitude. The leading end, whether this is "head" or tail, is evidently more rigid than the trailing end, flexibility at each end changing with reversal in direction of swimming. It is suggested that control of the amplitude of the waves of displacement in different regions of the body in swimming is a function of the notochord, contraction of the muscular notochordal plates increasing its stiffness. Connections between the central nervous system and the notochordal plates via the notochordal pits are already known to exist.
As exposure to light invariably induces swimming in dark–adapted animals, it seems probable that the eyes function in initiating movement. The rate of increase in number and size of the eye cups during larval and adult growth and their pattern of distribution in the nerve cord are given. In the adult the eye cups occur predominantly in the anterior and posterior regions of the body. This may be of significance in providing the stimulus for changes in flexibility of these regions in swimming.
High speed cinefilm has also shown that amphioxus can burrow "head" or tail-first and move through sand in a forward or a reverse direction. It is suggested that rapid reversal of direction is of greater importance in movement through sand than in swimming.  相似文献   

2.
条背萤幼虫水生适应性形态与游泳行为研究   总被引:4,自引:2,他引:2  
研究了条背萤Luciolasubstriata幼虫的形态特征及其对游泳行为的适应。形态及扫描电镜观察发现,条背萤幼虫存在二态现象。1~2龄幼虫虫体扁平,多毛。有7对呼吸鳃,分别位于腹部第1~7节。3~6龄幼虫虫体扁平呈船形,无呼吸鳃,靠气管呼吸。二者均具有扁平桨状的足、燕尾状尾节及位于尾节末端的圆柱形粘附器官。条背萤幼虫游动时身体腹面朝上,呈仰泳姿态,足向后划水。3~6龄幼虫仰泳时足共有8种摆动姿势。幼虫仰泳时足摆动1个周期所需时间为(0.611±0.16)s。腹部末端可上下左右摆动,当幼虫向前游动时,尾部上下摆动1个周期所需时间为(1.795±0.44)s。幼虫的游泳速度为(0.85±0.16)mh。仰泳中的幼虫改变方向时,头部和尾部同时向身体的一侧弯曲,当头部与尾部呈近90°时,幼虫用力将尾部伸直,此时水产生一个反作用力继续推动幼虫转向,幼虫转向的范围为0~90°。条背萤2种类型幼虫呼吸系统的不同决定着幼虫外部形态的差异及游泳行为的不同,而导致这种呼吸系统、形态及运动行为不同的原因很可能是条背萤对环境的适应性进化。  相似文献   

3.
Summary The gravid females of Mermis are positively phototaxic at the time of their migration to egglaying sites in vegetation on which their grasshopper hosts feed. On a horizontal felt surface, segments of the path traced by the tail are oriented approximately towards a source of monochromatic light in the 350–540 nm region, but are not oriented at longer wavelengths and in the dark. The components of this phototaxis include locomotion by the posterior 4/5 of the body, orientational bending of the neck region while the anterior is held above the substrate, and a scanning motion (bending) of the head region (anterior 2 mm). Like other nematodes and snakes, propulsion is associated with posteriorly propagated body waves, but unlike other animals known, the waves tend to lie perpendicular to a felt surface, and unlike other nematodes, contact with the surface is on the female's ventral surface. The body waves are initiated by the motion of the anterior 1/5 (15 mm) of the body, the average orientation of which determines the path of the following 4/5.During phototaxis, the anterior tip is swung both sideways and vertically about the direction towards the light source. The tip motion is a result of a scanning motion of the head and a slower orientational bending of the neck. The base of the head appears to be actively directed towards the source by the bending of the neck. This behavior can resolve two light sources positioned 120° apart but not 90° apart. The scanning motion of the head is independent of neck orientation and appears to enhance the probability of discovering the direction of a new source. Discovery is followed by a directed turn of the base of the head towards the source which is initiated by the bending of the neck. Locomotion of the body follows the path of the anterior through the turn and phototaxis is thus initiated.  相似文献   

4.
C. Mettaw 《Journal of Zoology》1969,158(3):341-356
A simple scheme is presented to illustrate four possible kinds of locomotory peristalsis in worm-like animals. The application of this scheme to real animals is discussed. Peristaltic waves may be of constriction or dilatation. A continuous body cavity enables the worm to regulate both speed and direction of travel by controlling the relative tonus of its body wall muscles. Thus peristaltic waves can be used to pump water without causing locomotion.
Sabella irrigates its tube by peristaltic swellings but the coelom and intestine are sub-divided by entire septa. Anatomical and morphological features which allow the shortest, widest segments forming a "piston" to slide down the tube and the narrower elongated segments to grip its walls are considered. In this way the construction of the typical body segment is given a functional explanation.
The functions of septa in annelids are discussed.  相似文献   

5.
Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.  相似文献   

6.
Cell movement is a complex phenomenon primarily driven by the actin network beneath the cell membrane, and can be divided into three general components: protrusion of the leading edge of the cell, adhesion of the leading edge and deadhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each of these steps is driven by physical forces generated by unique segments of the cytoskeleton. This review examines the specific physics underlying these phases of cell movement and the origins of the forces that drive locomotion.  相似文献   

7.
The relationship between slow waves and peristaltic reflexes has not been well analyzed. In this study, we have recorded the electrical activity of slow waves together with that generated by spontaneous peristaltic contractions at 240 extracellular sites simultaneously. Recordings were made from five isolated tubular and six sheet segments of feline duodenum superfused in vitro. In all preparations, slow waves propagated as broad wave fronts along the longitudinal axis of the preparation in either the aborad or the orad direction. Electrical potentials recorded during peristalsis (peristaltic waves) also propagated as broad wave fronts in either directions. Peristaltic waves often spontaneously stopped conducting (46%), in contrast to slow waves that never did. Peristaltic waves propagated at a lower velocity than the slow waves (0.98 +/- 0.25 and 1.29 +/- 0.28 cm/s, respectively; P < 0.001; n = 24) and in a direction independent of the preceding slow wave direction (64% in the same direction, 46% in the opposite direction). In conclusion, slow waves and peristaltic waves in the isolated feline duodenum seem to constitute two separate electrical events that may drive two different mechanisms of contraction in the small intestine.  相似文献   

8.
Whereas conventional manometry depicts peristalsis as pressure variation over time, high-resolution manometry makes it equally feasible to depict pressure variation along the lumen (spatial pressure variation plots). This study analyzed the characteristics of spatial pressure variation plots during normal peristalsis. High-resolution manometry studies of 72 normal subjects were analyzed with custom MATLAB programs. A coordinate-based strategy was used to normalize both timing of peristalsis and esophageal length. A spatial pressure variation function was devised to localize the proximal (P) and the distal troughs (D) on each subject's composite pressure topography and track the length within the P-D segment contracting concurrently in the course of peristalsis. The timing at which this function peaked was compared with that of the contractile deceleration point (CDP). The length of concurrent contraction during normal peristalsis had an average span of 9.3 cm, encompassing 61% of the distal P-D length of the esophagus. The timing of the CDP position closely matched that of maximal length within the P-D segment contracting concurrently (r = 0.90, P < 0.001). The pressure morphology of the maximal concurrent contraction was that of a smooth curve, and it was extremely rare to see multiple peaks along the vertical axis (seen in 4 of 72 subjects). Concurrent contraction involving ~60% of the P-D span occurred with normal peristalsis. The segment of concurrent contraction progressively increased as peristalsis progressed, peaked at the CDP, and then progressively decreased. How abnormalities of the extent or timing of concurrent contraction relate to clinical syndromes requires further investigation.  相似文献   

9.
The Drosophila larva is widely used for studies of neuronal development and function, yet little is known about the neuronal basis of locomotion in this model organism. Drosophila larvae crawl over a plain substrate by performing repetitive waves of forward peristalsis alternated by brief episodes of head swinging and turning. To identify sets of central and peripheral neurons required for the spatial or temporal pattern of larval locomotion, we blocked neurotransmitter release from defined populations of neurons by targeted expression of tetanus toxin light chain (TeTxLC) with the GAL4/UAS system. One hundred fifty GAL4 lines were crossed to a UAS-TeTxLC strain and a motion-analysis system was used to identify larvae with abnormal movement patterns. Five lines were selected that show discrete locomotor defects (i.e., increased turning and pausing) and these defects are correlated with diverse sets of central neurons. One line, 4C-GAL4, caused an unusual circling behavior that is correlated with approximately 200 neurons, including dopaminergic and peptidergic interneurons. Expression of TeTxLC in all dopaminergic and serotonergic but not in peptidergic neurons, caused turning deficits that are similar to those of 4C-GAL4/TeTxLC larvae. The results presented here provide a basis for future genetic studies of motor control in the Drosophila larva.  相似文献   

10.
On stimulation of the head, the caudal 20-30 segments of intact earthworms exhibit a marked dorso-ventral flattening reflex which is an element of the escape response. When the tail is removed this reflex is reconstituted gradually in segments anterior to the amputation level without regeneration of new tail segments. It takes longer to reestablish the flattening if larger parts of the body are cut off, but after 60 days p.o. all animals regained the full response independent of the number of segments amputated. Extirpation of three consecutive ganglia from the ventral nerve cord also suffices to develop flattening anterior to the operated segments, but the reaction is less pronounced and appears later than after tail amputation. Moreover, it vanishes at the same time the normal tail flattening is observed again, presumably after regeneration across the gap in the cord. In different regions of the body, area and perimeter distributions of transversely sectioned axons in the three pairs of segmental nerves (SN I-III) of the cord were measured. Characteristic changes along the length of the animal were found for SN I and SN III. In tail segments the axonal size distributions are more variable than "typical" segments. The flattening reflex is mediated by axons in SN III (Pallas and Drewes, 1981). In body segments having reconstituted behavioral characteristics of the lost tail segments, the area of the largest axons and the general size distribution in SN III approximate those found in normal tail segments.  相似文献   

11.
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of approximately 2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were achieved with visible and UV microbeam irradiation. The beating axostyle is helically twisted and has two principal movements, one resembling ciliary and the other flagellar beating. The anterior portion of the beating axostyle has effective and recovery phases with each beat thereby simulating the flexural motion of a beating cilium. Undulations develop from the flexural flipping motion of the anterior segment and travel along the axostyle like flagellar waves. The shape of the waves differs from that of flagellar waves, however, and are described as sawtooth waves. The propagating sawtooth waves contain a sharp bend, approximately 3 micron in length, made up of two opposing flexures followed by a straight helical segment approximately 23 micron long. The average wavelength is approximately 25 micron, and three to four sawtooth waves travel along the axostyle at one time. The bends are nearly planar and can travel in either direction along the axostyle with equal velocity. At temperatures between 5 degrees and 30 degrees C, one sees a proportionate increase or decrease in wave propagation velocity as the temperature is raised or lowered. Beating stops below 5 degrees C but will resume if the preparation is warmed. A microbeam of visible light shone on a small segment of the axostyle causes the typical sawtooth waves to transform into short sine-like waves that accumulate in the area irradiated. Waves entering the affected region appear to stimulate waves already accumulated there to move, and waves that emerge take on the normal sawtooth wave pattern. The effective wavelengths of visible light capable of modifying the wave pattern is in the blue region of the spectrum. The axostyle is severed when irradiated with an intense microbeam of UV light. Short segments of axostyle produced by severing it at two places with a UV microbeam can curl upon themselves into shapes resembling lockwashers. We propose that the sawtooth waves in the axostyle of P. vertens are generated by interrow cross-bridges which are active in the straight regions.  相似文献   

12.
几种农药对黑斑蛙黑斑蛙胚胎及蝌蚪的毒性   总被引:1,自引:0,他引:1  
本文报道了常用的几种农药对黑斑蛙胚胎及蝌蚪发育的毒性影响。结果表明 :农药对黑斑蛙胚胎、蝌蚪期的毒性大小依次为使它隆 >多效唑 >多菌灵 >异丙隆 >甲胺磷。胚胎期死亡时表现为胚体腐烂 ;蝌蚪期死亡时则表现为头部膨大 ,尾部缩小 ,弯曲。畸形在两个时期都表现为腹部膨大呈透明状和尾部弯曲  相似文献   

13.
Longitudinal and radial movements during spontaneous contractions of isolated segments of terminal ileum of the brushtail possum, a species of arboreal folivore, were studied using high definition spatiotemporal maps. Segments obtained from specimens were continuously perfused with solutions of various apparent viscosities at 3 cm and 5 cm hydrostatic pressure. A series of sustained tetrodotoxin-sensitive peristaltic events occurred during perfusion. The leading edge of each peristaltic event progressed by a succession of rhythmic surges of circular contraction with concerted concurrent phasic longitudinal contractions. Three types of peristaltic event were observed, with differing durations of occlusion and patterns of cyclic, in phase, circular and longitudinal contractions. Each peristaltic event was preceded by a change of shade on the D map that indicated circumferential dilatation. Differences in the slopes of these phasic shade changes from those occurring during peristalsis indicate that this distension is passive and likely results from aboral displacement of fluid. Tetradotoxin insensitive longitudinal contraction waves of frequency 9.2 min−1 occurred during and in the absence of peristalsis, originating at a variety of sites, and propagating either in an orad or aborad direction but predominantly in the latter. Perfusion with 1% guar gum, at 5 cm hydrostatic pressure caused the lumen to become distended and the generation of peristaltic events to cease pending reduction of the hydrostatic head to 3 cm but longitudinal contractile activity was preserved. Neither the frequencies nor the rates of progression of circular and longitudinal contractile events, nor the temporal coordination between these events, varied with the apparent viscosity of the perfusate or altered in a manner that could facilitate mixing.  相似文献   

14.
Summary Embryos of Drosophila melanogaster were irradiated in the presumptive head region with a UV-laser microbeam of 20 m diameter at two developmental stages, the cellular blastoderm and the extended germ band. The ensuing defects were scored in the cuticle pattern of the head of the first-instar larva, which is described in detail in this paper. The defects caused by irradiating germ band embryos when morphologically recognisable lobes appear in the head region were used to establish the segmental origin of various head structures. This information enabled us to translate the spatial distribution of blastoderm defects into a fate map of segment anlagen. The gnathal segments derive from a region of the blastoderm between 60% and 70% egg length (EL) dorsally and 60% and 80% ventrally. The area anterior to the mandibular anlage and posterior to the stomodaeum is occupied by the small anlagen of the intercalary and antennal segments ventrally and dorsally, respectively. The labrum, which originates from a paired anlage dorsally at 90% EL, is separated from the remaining head segments by an area for which we did not observe cuticle defects following blastoderm irradiation, presumably because those cells give rise to the brain. The dorsal and lateral parts of the cephalo-pharyngeal skeleton appear to be the only cuticle derivatives of the non-segmental acron. These structures derive from a dorso-lateral area just behind the putative brain anlage and may overlap the latter. In addition to the segment anlagen, the regions of the presumptive dorsal pouch, anterior lobe and post-oral epithelium, whose morphogenetic movements during head involution result in the characteristic acephalic appearance of the larva, have been projected onto the blastoderm fate map. The results suggest that initially the head of the Drosophila embryo does not differ substantially from the generalised insect head as judged by comparison of fate map and segmental organisation.  相似文献   

15.
The development of muscles and bones in fish is laterally asymmetric (laterality). A "lefty" individual has a "C"-shaped body, with its left-side muscles more developed and the left side of its head facing forward. The body of a "righty" is the mirror-image. This laterality causes asymmetric interactions between individuals of different fish species, in that a righty or lefty fish consumes more lefty or righty fish, respectively. To investigate the coupling mechanisms between body asymmetry and predatory behavior, we conducted angling experiments with largemouth bass (Micropterus salmoides). We used the position of the fishhook set in the mouth to indicate the movement direction of the fish when it took the bait. Righty fish had more hooks set on the right side, whereas lefty fish had more on the left side, indicating that righty fish moved more to the left, and lefty fish moved more to the right, in successful catches. The relationship between the hooked position and movement direction was confirmed by video-image analysis of the angling.  相似文献   

16.
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibire(ts), namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1-10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.  相似文献   

17.
Allometric growth is a common feature during fish larval development. It has been proposed as a growth strategy to prioritize the development of body segments related to primordial functions like feeding and swimming to increase the probability of survival during this critical period. In the present study we evaluated the allometric growth patterns of body segments associated to swimming and feeding during the larval stages of Pacific red snapper Lutjanus peru. The larvae were kept under intensive culture conditions and sampled every day from hatching until day 33 after hatching. Each larva was classified according to its developmental stage into yolk-sac larva, preflexion larva, flexion larva or postflexion larva, measured and the allometric growth coefficient of different body segments was evaluated using the potential model. Based on the results we can infer the presence of different ontogenetic priorities during the first developmental stages associated with vital functions like swimming during the yolk-sac stage [total length (TL) interval = 2.27–3.005 mm] and feeding during the preflexion stage (TL interval = 3.007–5.60 mm) by promoting the accelerated growth of tail (post anal) and head, respectively. In the flexion stage (TL interval = 5.61–7.62 mm) a change in growth coefficients of most body segments compared to the previous stage was detected, suggesting a shift in growth priorities. Finally, in the postflexion stage (TL interval = 7.60–15.48 mm) a clear tendency to isometry in most body segments was observed, suggesting that growth priorities have been fulfilled and the larvae will initiate with the transformation into a juvenile. These results provide a framework of the larval growth of L. peru in culture conditions which can be useful for comparative studies with other species or in aquaculture to evaluate the changes in larval growth due to new conditions or feeding protocols.  相似文献   

18.
Peristalsis is the aboral movement by which the intestine propels its contents. Since pharmacological research requires an experimental model with which drug-induced modifications of peristalsis can be reliably quantified, we set out to develop and validate an in vitro method for studying peristalsis in multiple gut segments. In our arrangement, up to four 10cm segments isolated from the guinea-pig jejunum and ileum can be set up in parallel and their lumens perfused. Peristalsis was elicited by pressure-evoked wall distension, and the peristalsis-induced changes in the intraluminal pressure were evaluated with software that determined the peristaltic pressure threshold, the frequency, maximal acceleration and amplitude of the peristaltic waves, and the residual baseline pressure. Validation experiments showed that the peristalsis parameters at baseline and after modification by morphine (0.01-10microM) did not differ between segments from the jejunum and ileum, or between segments examined in a consecutive manner. In conclusion, our work succeeded in optimising the use of the guinea-pig jejunum and ileum for multiple recordings of peristalsis in vitro, and in refining the recording and evaluation of peristaltic motility. This system promises to be particularly useful in the pharmacological screening and testing of drugs which modify peristalsis.  相似文献   

19.
The posterior end of the aquatic oligochaete, Branchiura sowerbyi (Tubificidae) protrudes above the sediments and is specialized to carry out several rhythmic respiratory movements. These include 1) waves of flexion by paired gill filaments on each posterior segment, 2) body undulations, and 3) rectal water pumping. Since execution of these behaviors renders the worm's posterior end vulnerable to predation, appropriate neurobehavioral mechanisms have evolved that permit extremely rapid escape of tail segments into the sediments. Some of these mechanisms include 1) highly sensitive sensory apparatus for detecting substrate vibrations, water displacements, or touch, 2) large diameter and rapidly conducting lateral giant nerve fibers, and 3) adequacy of a single lateral giant fiber impulse for evoking an all-or-none longitudinal muscle contraction. The significance of these posterior respiratory and escape reflex specializations are discussed in relation to possible predator foraging strategies.  相似文献   

20.
Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号