首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Mast cells are secretory cells strategically located in the vicinity of blood vessels where they can readily initiate and modulate various inflammatory processes, including plasma exudation and leukocyte infiltration. We have previously shown that 50% of the neutrophil influx during immune complex peritonitis in mice is due to mast cells. Eicosanoids are important mediators of various inflammatory processes including neutrophil infiltration. The possibility that mast cells are essential for the production of leukotrienes (LT) involved in the elicitation of neutrophils in immune complex peritonitis was investigated in mast cell-deficient, WBB6F1-W/WV, and normal, WBB6F(1-)+/+, mice. The time course and amounts of immunoreactive PGE2, 6-keto-PGF1 alpha, and TX3B2 released into the peritoneal exudates were similar in both sets of mice. LTB4 and LTC4 levels, however, were twofold higher in +/+ than in W/WV mice 2 h after stimulation. HPLC analysis of the peritoneal exudate confirmed the presence of leukotrienes. The 5-lipoxygenase inhibitor A-63162 blocked leukotriene production in a dose-dependent manner in both sets of mice. However, this compound caused a significant reduction (60%) of neutrophil infiltration only in WBB6F(1-)+/+ but not in the mast cell-deficient mice. Mast cell reconstitution of WBB6F1-W/WV mice restored the effect of A-63162 on PMN recruitment. These data suggest that mast cells in the vicinity of blood vessels are important for the synthesis of leukotrienes responsible for PMN recruitment.  相似文献   

5.
Large increases in cAMP concentration inside the cell are generally growth inhibitory for most cell lines of mesenchymal and epithelial origin. Moreover, recent data suggest a role of cAMP in survival of different cell types. Herein, the ability of forskolin (an adenylyl cyclase activator) and IBMX (3-isobutyl-1-methylxanthine) (a phosphodiesterase inhibitor) to modulate cell cycle progression and survival of human pancreatic cancer cells was evaluated. We showed that forskolin + IBMX inhibited serum-induced ERK activities, Rb hyperphosphorylation, Cdk2 activity, and p27(Kip1) downregulation and caused G1 arrest in MIA PaCa-2 cells. Furthermore, forskolin + IBMX protected pancreatic cells against apoptosis induced by prolonged inhibition of ERK activities by preventing Bcl-X(L) downregulation, activation of caspases 3, 6, 8, and 9, and PARP cleavage and by inducing Bad phosphorylation (ser112). Taken together, our data demonstrate for the first time that cAMP is an inhibitor of cell cycle progression and apoptosis in human pancreatic cancer cells.  相似文献   

6.
We demonstrated in this study the critical role of NKT cells in the lethal ileitis induced in C57BL/6 mice after infection with Toxoplasma gondii. This intestinal inflammation is caused by overproduction of IFN-gamma in the lamina propria. The implication of NKT cells was confirmed by the observation that NKT cell-deficient mice (Jalpha281(-/-)) are more resistant than C57BL/6 mice to the development of lethal ileitis. Jalpha281(-/-) mice failed to overexpress IFN-gamma in the intestine early after infection. This detrimental effect of NKT cells is blocked by treatment with alpha-galactosylceramide, which prevents death in C57BL/6, but not in Jalpha281(-/-), mice. This protective effect is characterized by a shift in cytokine production by NKT cells toward a Th2 profile and correlates with an increased number of mesenteric Foxp3 lymphocytes. Using chimeric mice in which only NKT cells are deficient in the IL-10 gene and mice treated with anti-CD25 mAb, we identified regulatory T cells as the source of the IL-10 required for manifestation of the protective effect of alpha-galactosylceramide treatment. Our results highlight the participation of NKT cells in the parasite clearance by shifting the cytokine profile toward a Th1 pattern and simultaneously to immunopathological manifestation when this Th1 immune response remains uncontrolled.  相似文献   

7.
8.
Mast cells clearly are critical for the expression of some IgE-dependent responses, but their roles in other forms of inflammation are uncertain. We previously described a new model system for defining the unique contribution of mast cells to biologic responses in vivo, genetically mast cell-deficient WBB6F1-W/Wv mice that have undergone selective local repair of their mast cell deficiency by the injection of IL-3-dependent cultured mast cells derived from the congenic normal (WBB6F1-+/+) mice. Using this approach, we analyzed the contribution of mast cells to the acute inflammation induced by the epicutaneous application of PMA. Even though PMA can activate a wide variety of cell types that may contribute to acute inflammation, we found that mast cells were required for the full expression of the tissue swelling and leukocyte infiltration associated with the response to the agent in vivo. Thus, in WBB6F1-W/Wv mice selectively reconstituted with dermal mast cells by intradermal injection of cultured WBB6F1-+/+ mast cells into the left ear only, PMA induced approximately twice the tissue swelling and neutrophil infiltration in the mast cell-reconstituted left ears as in the contralateral control ears. This represents the first use of W/Wv mice locally reconstituted with mast cells to confirm the hypothesis that mast cells can represent an important amplification mechanism in acute inflammatory responses of nonimmunologic origin. It also defines a model system that may be generally useful for investigating mast cell-dependent and -independent aspects of acute inflammatory responses.  相似文献   

9.

Background

Taurine is a free amino acid present in high concentrations in a variety of organs of mammalians. As an antioxidant, taurine has been found to protect cells against oxidative stress, but the underlying mechanism is still unclear.

Methods

In this report, we present evidence to support the conclusion that taurine exerts a protective function against endoplasmic reticulum (ER) stress induced by H2O2 in PC 12 cells. Oxidative stress was introduced by exposure of PC 12 cells to 250 uM H2O2 for 4 hours.

Results

It was found that the cell viability of PC 12 cells decreased with an increase of H2O2 concentration ranging from approximately 76% cell viability at 100 uM H2O2 down to 18% at 500 uM H2O2. At 250 uM H2O2, cell viability was restored to 80% by taurine at 25 mM. Furthermore, H2O2 treatment also caused a marked reduction in the expression of Bcl-2 while no significant change of Bax was observed. Treatment with taurine restored the reduced expression of Bcl-2 close to the control level without any obvious effect on Bax. Furthermore, taurine was also found to suppress up-regulation of GRP78, GADD153/CHOP and Bim induced by H2O2, suggesting that taurine may also exert a protective function against oxidative stress by reducing the ER stress.

Conclusion

In summary, taurine was shown to protect PC12 cells against oxidative stress induced by H2O2. ER stress was induced by oxidative stress and can be suppressed by taurine.
  相似文献   

10.
Immunological memory is a required component of protective antimalarial responses raised by T cell-inducing vaccines. The magnitude of ex vivo IFN-gamma T cell responses is widely used to identify immunogenic vaccines although this response usually wanes and may disappear within weeks. However, protection in the field is likely to depend on durable central memory T cells that are not detected by this assay. To identify longer-lived memory T cells, PBMC from malaria-naive vaccinated volunteers who had received prime boost vaccinations with a combination of DNA and/or viral vectors encoding the multiepitope string-thrombospondin-related adhesion protein Ag were cultured in vitro with Ag for 10 days before the ELISPOT assay. Ex vivo T cell responses peaked at 7 days after the final immunization and declined substantially over 6 mo, but responses identified after T cell culture increased over the 6-mo period after the final immunization. Moreover, individual cultured ELISPOT responses at the day of challenge time point correlated significantly with degree of protection against malaria sporozoite challenge, whereas ex vivo responses did not, despite a correlation between the peak ex vivo response and magnitude of memory responses 6 mo later. This cultured assay identifies long-lasting protective T cell responses and therefore offers an attractive option for assessments of vaccine immunogenicity.  相似文献   

11.
《Life sciences》1994,55(8):PL145-PL150
The effects of the natural flavonoid hispidulin (6-methoxy-5, 7, 4′-trihydroxyflavone) on bromobenzene-induced hepatotoxicity in mice were investigated. We found a correlation between liver injury and hepatic lipid peroxidation besides a strong liver glutathione depletion due to the toxicant. Hispidulin at doses between 50 and 150 mg/kg i.p. compared favourably with the reference compound N-acetyl-L-cysteine for inhibition of liver injury and lipid peroxidation. The flavonoid at the highest dose tested was also able to counteract reduced glutathione depletion induced by bromobenzene in starved mice. These hepatoprotective effects can be related to the antioxidant properties of hispidulin.  相似文献   

12.
The complement-derived anaphylatoxin peptides, C3a and C5a, have long been considered to manifest their spasmogenic activities primarily through stimulation of mast cells. Although mast cells represent the major non-circulating repository for histamine, these cells also elaborate a number of additional, highly potent spasmogenic mediators derived from arachidonic acid. The same lipid mediators can be released by many other cell types. As a result, evaluation of the role of mast cells in anaphylatoxin-dependent responses cannot be based exclusively upon an analysis of the mediators released. We evaluated the role of mast cells in anaphylatoxin-induced ileal smooth muscle contractions by testing isolated segments of ileal tissues derived from genetically mast cell-deficient mice and their congenic normal (+/+) littermates. Isolated tissues from either congenic normal (+/+) or mast cell-deficient Sl/Sld mice responded similarly to acetylcholine, histamine, serotonin, prostaglandin E2, and the thromboxane A2 analog, U-46619. At 1 microgram/ml, histamine induced contractions of greater magnitude in tissues from mast cell-deficient animals; however, this mediator also desensitized the tissues to repeat challenge with histamine at the same concentration. C5a at 1 nM resulted in contractions equivalent to approximately 50% of the maximal KCl response; normal and mast cell-deficient tissues responded in a similar manner. C5a also released histamine from the normal mouse ileum, in addition to causing contraction of the tissues. C3a at 200 nM also produced similar contractile responses in both +/+ and S1/S1d tissues. These studies show that the anaphylatoxin peptides C3a and C5a are capable of contracting smooth muscle-containing tissues by a mechanism completely independent of mast cells. In addition, we also demonstrated that mast cell degranulation does not necessarily provoke ileal contraction. Thus compound 48/80, a mast cell degranulating agent unrelated to the anaphylatoxins, did not induce contractions in ileal tissues, even when used at concentrations as high as 100 micrograms/ml. Compound 48/80 did release histamine from the +/+ ileum, however, indicating that the agent was able to cause degranulation of ileal mast cells. Taken together, these data indicate that spasmogenic responses to anaphylatoxins (and possibly other agents) that are associated with mast cell degranulation need not necessarily require mast cell mediator release for their expression.  相似文献   

13.
Carbon monoxide (CO) is an endogenous product of mammalian cells generated by heme-oxygenase, presenting anti-apoptotic properties in several tissues. The present work demonstrates the ability of small amounts of exogenous CO to prevent neuronal apoptosis induced by excitotoxicity and oxidative stress in mice primary culture of cerebellar granule cells. Additionally, our data show that endogenous CO is a heme-oxygenase product critical for its anti-apoptotic activity. Despite being neuroprotective, CO also induces reactive oxygen species generation in neurons. These two phenomena suggest that CO induces pre-conditioning (PC) to prevent cell death. The role of several PC mediators, namely soluble guanylyl cyclase, nitric oxide (NO) synthase, and ATP-dependent mitochondrial K channel (mitoK(ATP)) was addressed. Inhibition of soluble guanylyl cyclase or NO synthase activity, or closing of mitoK(ATP) abolishes the protective effect conferred by CO. In addition, CO treatment triggers cGMP and NO production in neurons. Opening of mitoK(ATP), which appears to be critical for CO prevention of apoptosis, might be a later event. We also demonstrated that reactive oxygen species generation and de novo protein synthesis are necessary for CO PC effect and neuroprotection. In conclusion, CO induces PC and prevents neuronal apoptosis, therefore constituting a novel and promising candidate for neuroprotective therapies.  相似文献   

14.
Dexamethasone at a dose of 6 mg?kg?1 given to rabbits for three days prior to challenge with sodium arachidonate (2 mg?kg?1) intravenously, improved survival from 0% to 90% (p<0.01). Dexamethasone, given for shorter periods prior to arachidonate injection resulted in survival rates from 17% to 40%. In dexamethasone (3 days) treated rabbits, plasma thromboxane B2 concentrations were only increased by 30% compared with increases of 950% in untreated rabbits (p<0.001). Dexamethasone treated rabbits did not exhibit pulmonary thrombosis as did untreated rabbits given arachidonate. However, platelet rich plasma from both control and treated rabbits was aggregated by 0.2 mM arachidonate in vitro. The mechanism of the protective effect of dexamethasone appears to be related to induction of enzymes or stimulation of clearance of injected arachidonic acid, since steroid treated rabbits cleared labeled arachidonic acid more rapidly than untreated rabbits.  相似文献   

15.
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation.  相似文献   

16.
Activities of lysosomal hydrolases have been evaluated in relation to indomethacin and naloxone, using purified lysosomal fractions from rat intestinal mucosa. Indomethacin treatment significantly decreased (p less than 0.001) lysosomal enzyme activities in purified lysosomes, while an increase in the activities was observed in intestinal homogenates. However, indomethacin could not affect lysosomal system in animals pretreated with naloxone, thereby establishing that naloxone neutralises the effect of indomethacin.  相似文献   

17.
18.
UV-induced DNA damage plays a key role in the etiology of certain diseases. The ability of blueberry anthocyanins and anthocyanidins (BA) to protect cellular DNA from UV-induced damage was investigated. BA were extracted by water (BAW), ethanol (BAE) or methanol (BAM). These extracts partially restored proliferation of UV-irradiated HepG2 cells as shown by MTT assay. Treatment with BA extracts at 75 μg/ml decreased reactive oxygen species and decreased DNA damage by tail moment of comet assay and expression of γH2AX in situ. BAM significantly decreased gene and protein expression of p53, phospho-p53 (Ser15), and p21 in UV-irradiated HepG2 cells. BA thus efficiently protects cells from DNA damage in vitro. Blueberry may potentially be used as a good source of naturally radioprotective agents.  相似文献   

19.
We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at > or =5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.  相似文献   

20.
All living organisms respond to environmental stresses, such as heat or ethanol by increasing the synthesis of a specific group of proteins termed heat shock proteins (Hsps) or stress proteins. Major Hsps are molecular chaperones and proteases. Molecular chaperones facilitate the proper folding of polypeptides, protect other proteins from inactivation, and reactivate aggregated proteins. Heat shock proteases eliminate proteins irreversibly damaged by stress. This review describes the role of heat shock proteins of the model bacterial cell, E. coli in the protection of other proteins against aggregation and in the mechanism of removal of protein aggregates from the cell. This mechanism remains unclear and it is believed to involve substrate renaturation and proteolysis by molecular chaperones and heat shock proteases. Recently, many studies have been focused on the disaggregation and reactivation of proteins by a bi-chaperone system consisting of DnaK/DnaJ/GrpE and ClpB, an ATPase from the AAA superfamily of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号