首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib are clinically effective treatments for non-small cell lung cancer (NSCLC) patients with EGFR activating mutations. However, therapeutic effect is ultimately limited by the development of acquired TKI resistance. MicroRNAs (miRNAs) represent a category of small non-coding RNAs commonly deregulated in human malignancies. The aim of this study was to investigate the role of miRNAs in gefitinib resistance. We established a gefitinib-resistant cell model (PC9GR) by continually exposing PC9 NSCLC cells to gefitinib for 6 months. MiRNA microarray screening revealed miR-138-5p showed the greatest downregulation in PC9GR cells. Re-expression of miR-138-5p was sufficient to sensitize PC9GR cells and another gefitinib-resistant NSCLC cell line, H1975, to gefitinib. Bioinformatics analysis and luciferase reporter assay showed that G protein-coupled receptor124 (GPR124) was a direct target of miR-138-5p. Experimental validation demonstrated that expression of GPR124 was suppressed by miR-138-5p on protein and mRNA levels in NSCLC cells. Furthermore, we observed an inverse correlation between the expression of miR-138-5p and GPR124 in lung adenocarcinoma specimens. Knockdown of GPR124 mimicked the effects of miR-138-5p on the sensitivity to gefitinib. Collectively, our results suggest that downregulation of miR-138-5p contributes to gefitinib resistance and that restoration of miR-138-5p or inhibition GPR124 might serve as potential therapeutic approach for overcoming NSCLC gefitinib resistance.  相似文献   

5.
6.
7.
Steroid hormones are known to mediate rapid non-genomic effects occurring within minutes, besides the classical genomic actions mediated by the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR). The glucocorticoid hormone (GC) has significant role in the regulation of T-cell activation; however, the cross-talk between the GC and T-cell receptor (TcR) signal transducing pathways are still to be elucidated. We examined the rapid effects of GC exposure on in vitro cultured human T-cells. Our results showed that Dexamethasone (DX), a GC analogue, when applied at high dose (10 microM), induced rapid (within 5 min) tyrosine-phosphorylation events in Jurkat cells. Short DX pre-treatment strongly inhibited the tyrosine-phosphorylation stimulated by CD3 cross-linking. Furthermore, we also investigated the phosphorylation status of ZAP-70, an important member of tyrosine kinase mediated signalling pathway of TcR-elicited T-cell activation. Here, we demonstrate that high dose DX induced a rapid ZAP-70 tyrosine-phosphorylation in Jurkat T-cells. DX-induced ZAP-70 phosphorylation could be inhibited by RU486 (GR antagonist), suggesting that this process was GR mediated. DX-induced ZAP-70 phosphorylation did not occur in the absence of active p56-lck as examined in the p56-lck kinase-deficient Jurkat cell line JCaM1.6. Our results show that DX, at a high dose, can rapidly influence the initial tyrosine-phosphorylation events of the CD3 signalling pathway in Jurkat cells, thereby modifying TcR-derived signals. Lck and ZAP-70 represent an important molecular link between the TcR and GC signalling pathways.  相似文献   

8.
A combination of the gel retardation assay and interference by hydroxyl radical modification (missing nucleoside technique) was used to analyze the interaction of the glucocorticoid receptor (GR) with various glucocorticoid responsive elements (GRE). Short oligonucleotides containing the 15-bp GRE and 1 to 3 flanking base pairs on each side, are bound with very low affinity. The same GREs, when positioned in the center of a large DNA fragment (40-50 bp), show high affinity for the receptor. However, when the GRE is positioned at the border of a 54-bp fragment, the affinity of the GR for the GRE decreases markedly. The DNA binding affinity increases linearly with each added flanking base pair and optimal binding is observed with 8-10 flanking bp. Thus, the nonconserved DNA sequences flanking the GRE contribute significantly to the free energy of receptor binding to DNA. Using larger DNA fragments (greater than 100 bp) and a smaller form of the receptor (40 kD), two retarded complexes are found that correspond to monomeric and homodimeric receptor DNA complexes. The DNA-binding domain of the GR (20 kD), expressed in bacteria, binds to the GRE as a monomer as well as a dimer and can form heterodimers with the native 94-kD GR. Insertion or deletion of one single base pair between the two halves of the GRE reduces the affinity for the homodimeric form of the native GR, and inhibits the function of the GRE in gene transfer experiments, suggesting that a dimer of the GR is the functional entity that binds to the GRE.  相似文献   

9.
10.
11.
12.
13.
Tuberoinfundibular peptide of 39 residues (TIP39) and the parathyroid hormone-2 (PTH2) receptor form part of an extended family of related signaling molecules that includes the PTH1 receptor, which responds to PTH and PTH-related protein. TIP39 does not appreciably activate the PTH1 receptor, but in this study it is shown to bind the receptor with moderate affinity (59 nm). In this study, we investigated the molecular determinants of both ligand and receptor for the PTH2 receptor selectivity of TIP39 and quantitatively evaluated the role of molecular elements in the binding of TIP39 to the PTH2 and PTH1 receptors. A chimeric receptor composed of the N-terminal extracellular domain of the PTH1 receptor and the remainder (juxtamembrane domain) of the PTH2 receptor (P2-NP1) was fully activated by TIP39 (E(max) = 98% of the rPTH-(1-34), E(max), EC(50) = 2.0 nm). This receptor chimera bound TIP39 with an equivalent affinity to the wild-type PTH2 receptor (2. 3 and 2.0 nm, respectively). The reciprocal chimeric receptor (P1-NP2) was not activated by TIP39 and bound the ligand with an affinity equivalent to that of the PTH1 receptor. Thus, the juxtamembrane receptor domain specifies the signaling and binding selectivity of TIP39 for the PTH2 receptor over the PTH1 receptor. Removing six N-terminal residues of TIP39 eliminated activation of the PTH2 receptor and reduced binding affinity 70-fold. In contrast, this truncation increased affinity for the PTH1 receptor 10-fold, reversing the PTH2/PTH1 receptor binding selectivity and resulting in a high affinity interaction of TIP-(7-39) with the PTH1 receptor (6 nm). These findings can be explained by a strong interaction between the N-terminal region of TIP39 and the juxtamembrane domain of the PTH2 receptor, with the corresponding domain of the PTH1 receptor acting as a selectivity barrier against high affinity binding of TIP39. As a result, TIP-(7-39) is a highly potent, selective antagonist for the PTH1 receptor.  相似文献   

14.
This investigation addresses the interaction of insulin (INS) and glucocorticoid (GC) signaling in the hepatic regulation of tryptophan oxygenase (TO) enzyme activity in the rat. Male Wistar rats (200-250 g b.w) received an injection of the different doses of INS (10, 25, 50, 70 and 100 microg/200 g b.w., i.p.) and were used for experiments 3 h and 18 h after INS administration. This study shows that maximum of TO activity was found at dose of 50 microg of INS with peak increases observed at 3 h and 18 h after injection of INS, while INS had no effect on TO activity in adrenalectomized rats. The analysis of INS effects on glucocorticoid receptor-complex (GC/GR complex) stability shows that complexes from INS-treated rats are less stable than those from control animals. In addition, INS-stimulated stability of glucocorticoid receptor (GR) protein was significantly increased from the controls. Furthermore, the results show that GC/GR complexes from INS-treated rats could be activated and accumulated at higher rate in cell nuclei of control animals. These data support the involvement of INS in modulation of GC signaling pathway which mediates, in part, the activity of TO.  相似文献   

15.
16.
Genes encoding enzymes involved in gluconeogenesis are activated in liver shortly after birth by the synergistic effect of glucagon and glucocorticoids. This induction is achieved by the synergistic action of hormone responsive and liver-specific enhancer elements. In the case of glucocorticoids, this enhancer is composed of a glucocorticoid-response element (GRE) and a number of cell-specific hepatocyte nuclear factor 3 (HNF-3) binding sites. The GRE binds the ligand-activated glucocorticoid receptor (GR) which is ubiquitously expressed and the HNF-3 element binds a cell-specific protein factor. To further understand the role of cell-specific glucocorticoid signalling in the perinatal period and earlier during development we have studied the expression of the mouse GR gene. The gene has been cloned and fully characterized. Expression of the gene is controlled by at least three promoters, one of which is only active in T-lymphocytes. Expression of GR mRNA has been detected back to day 9.5 of mouse development. The role of GR during mouse development has been further analysed by disruption of the GR gene in vivo by homologous recombination in mouse embryonic stem cells.  相似文献   

17.
18.
19.
Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells. Targeted mutation of the GR should consequently abolish chromaffin cells. The present analysis of mice lacking GR gene product demonstrates that animals have normal numbers of adrenal chromaffin cells. Moreover, there are no differences in terms of apoptosis and proliferation or in expression of several markers (e.g. GAP43, acetylcholinesterase, adhesion molecule L1) of chromaffin cells in GR-deficient and wild-type mice. However, GR mutant mice lack the adrenaline-synthesizing enzyme PNMT and secretogranin II. Chromaffin cells of GR-deficient mice exhibit the typical ultrastructural features of this cell phenotype, including the large chromaffin granules that distinguish them from sympathetic neurones. Peripherin, an intermediate filament of sympathetic neurones, is undetectable in chromaffin cells of GR mutants. Finally, when stimulated with nerve growth factor in vitro, identical proportions of chromaffin cells from GR-deficient and wild-type mice extend neuritic processes. We conclude that important phenotypic features of chromaffin cells that distinguish them from sympathetic neurones develop normally in the absence of GR-mediated signalling. Most importantly, chromaffin cells in GR-deficient mice do not convert to a neuronal phenotype. These data strongly suggest that the dogma of an essential role of glucocorticoid signalling for the development of chromaffin cells must be abandoned.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号