首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our understanding of Glossina fuscipes fuscipes, a major vector of sleeping sickness, has been severely constrained by a lack of genetic markers for mapping and population genetic studies. Here we present 10 newly developed microsatellite loci for this tsetse species. Heterozygosity levels in Moyo, an Ugandan population, averaged 0.57, with only two loci showing very low heterozygosity. Five loci carried more than six alleles. Together with five recently published microsatellite loci, this brings the number of available microsatellite loci for this species to 15. Their availability will greatly facilitate future studies on the genetics of this important human disease vector.  相似文献   

2.
3.
4.
Three different bacterial species are regularly described from tsetse flies. However, no broad screens have been performed to investigate the existence of other bacteria in this medically and agriculturally important vector insect. Utilising both culture dependent and independent methods we show that Kenyan populations of Glossina fuscipes fuscipes harbour a surprising diversity of bacteria. Bacteria were isolated from 72% of flies with 23 different bacterial species identified. The Firmicutes phylum dominated with 16 species of which seven belong to the genus Bacillus. The tsetse fly primary symbiont, Wigglesworthia glossinidia, was identified by the culture independent pathway. However, neither the secondary symbiont Sodalis nor Wolbachia was detected with either of the methods used. Two other bacterial species were identified with the DNA based method, Bacillus subtilis and Serratia marcescens. Further studies are needed to determine how tsetse flies, which only ever feed on vertebrate blood, pick up bacteria and to investigate the possible impact of these bacteria on Glossina longevity and vector competence.  相似文献   

5.
The cosmopolitanism paradigm in the biogeography of freshwater invertebrates is currently being replaced by non-cosmopolitanism or continental endemism. Benthic water fleas (Cladocera) from the family Chydoridae were the first group of freshwater invertebrates for which non-cosmopolitanism and cryptic diversity was substantiated by morphological studies. Yet, little is known about genetic differentiation and evolutionary history of chydorid species complexes. Here we present the first analysis of the genetic versus morphological differentiation in a benthic cladoceran species complex—Chydorus sphaericus s. str. using sequence variation in a nuclear (ribosomal internal transcribed spacer 2, ITS-2) and a mitochondrial (cytochrome c oxidase subunit I, COI) genes in 50 Holarctic localities. We tested for continental endemism and cryptic diversity predicted by previous morphological studies. We found evidence for the presence of at least seven putative regional species in the Holarctic, at least three of them being distributed beyond a single continent. While the molecular and sexual stage characters showed general concordance on species lineages, parthenogenetic female characters lacked resolution or were unassociated with molecular lineages. We conclude that cryptic regional lineages of benthic cladocerans are apparent and that the sexual stages represent the most informative morphological source of species characters for this environmental indicator group.  相似文献   

6.
Tsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub‐Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co‐occurrence of both forms of human‐infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field‐survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field‐survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well‐connected habitat in northwestern Uganda, and twenty‐four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes samples from a model‐predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well‐connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.  相似文献   

7.
Journal of Plant Research - Revealing cryptic diversity is of great importance for effective conservation and understanding macroevolution and ecology of plants. Ottelia, a typical example of...  相似文献   

8.
The prospects of the fungus Metarhizium anisopliae (Metsch.) Sorok. applied in contamination devices (Cds) to control tsetse fly Glossina fuscipes fuscipes Newstead was tested in a field experiment in Lake Victoria from 2 March 1999 to 31 August 2000. One hundred and sixty pyramidal traps mounted with Cds were deployed along the lakeshore and rivers on Mfangano Island. Contamination devices were loaded with 1.5-2.0 g of dry conidia/Cd. On the second island, Nzenze Island, four pyramidal traps fitted with plastic bags were deployed and served as the conventional 'trap and kill' population suppression method. A third island, Ngodhe Island, remained untreated and served as a control. Cds were recharged monthly with fresh conidia; plastic bags were also changed monthly. The apparent changes in population density were monitored weekly using biconical traps set at random on the three islands. To assess the incidence of M. anisopliae in tsetse flies on Mfangano Island, flies captured during monitoring were maintained in the laboratory and their mortality recorded. Fly population was reduced to 82.4 and 95.8% relative to untreated control on Mfangano and Nzenze islands, respectively, during the experimental period. Compared to the fungus-treated island, the number of flies caught in monitoring traps increased considerably in 'trap kill' treatment at 5 months after the treatments were removed. The incidence of M. anisopliae in fly populations was low during the 12 weeks following the initiation of the experiment but increased afterward until termination of the treatment. M. anisopliae could still be recovered from fly populations at 3 months after termination of the treatment, although the incidence was low. The results of this study have shown that application of M. anisopliae in a contamination device can suppress the population of G. fuscipes fuscipes comparable to the 'trap and kill' technology.  相似文献   

9.

Background

Glossina fuscipes fuscipes is the major vector of human African trypanosomiasis, commonly referred to as sleeping sickness, in Uganda. In western and eastern Africa, the disease has distinct clinical manifestations and is caused by two different parasites: Trypanosoma brucei rhodesiense and T. b. gambiense. Uganda is exceptional in that it harbors both parasites, which are separated by a narrow 160-km belt. This separation is puzzling considering there are no restrictions on the movement of people and animals across this region.

Methodology and Results

We investigated whether genetic heterogeneity of G. f. fuscipes vector populations can provide an explanation for this disjunct distribution of the Trypanosoma parasites. Therefore, we examined genetic structuring of G. f. fuscipes populations across Uganda using newly developed microsatellite markers, as well as mtDNA. Our data show that G. f. fuscipes populations are highly structured, with two clearly defined clusters that are separated by Lake Kyoga, located in central Uganda. Interestingly, we did not find a correlation between genetic heterogeneity and the type of Trypanosoma parasite transmitted.

Conclusions

The lack of a correlation between genetic structuring of G. f. fuscipes populations and the distribution of T. b. gambiense and T. b. rhodesiense indicates that it is unlikely that genetic heterogeneity of G. f. fuscipes populations explains the disjunct distribution of the parasites. These results have important epidemiological implications, suggesting that a fusion of the two disease distributions is unlikely to be prevented by an incompatibility between vector populations and parasite.  相似文献   

10.
Taxus cuspidata var. nana is a cultivated variety of Taxus cuspidata and contains taxol, a valuable secondary metabolite of medical importance, both in their stems and leaves. In this paper, random amplified polymorphic DNA (RAPD) markers were used to assess the genomic diversity of individual plants within T. cuspidata population. Seventy-four randomly selected plants were analyzed by 29 selected primers among which 25 primers produced polymorphic banding patterns. The coefficient of similarity among the plants ranged from 0.30 to 1.00 with a mean of 0.605. Our results showed that a surprisingly high level of genomic diversity existed within T. cuspidata, and RAPD markers were effective in revealing the diversity. Cluster analysis divided the plants into two groups. This data, when taken together with earlier findings showing variation in taxol content within a natural population of T. cuspidata, suggests a tantalizing possibility for selecting genomically homogeneous T. cuspidata plant lines with elevated and stable taxol content. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 5, pp. 771–776. The text was submitted by the authors in English.  相似文献   

11.
Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research.  相似文献   

12.
Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets.  相似文献   

13.
Kcv is a 94-amino acid protein encoded by chlorella virus PBCV-1 that corresponds to the pore module of K(+) channels. Therefore, Kcv can be a model for studying the protein design of K(+) channel pores. We analyzed the molecular diversity generated by approximately 1 billion years of evolution on kcv genes isolated from 40 additional chlorella viruses. Because the channel is apparently required for virus replication, the Kcv variants are all functional and contain multiple and dispersed substitutions that represent a repertoire of allowed sets of amino acid substitutions (from 4 to 12 amino acids). Correlations between amino acid substitutions and the new properties displayed by these channels guided site-directed mutations that revealed synergistic amino acid interactions within the protein as well as previously unknown interactions between distant channel domains. The effects of these multiple changes were not predictable from a priori structural knowledge of the channel pore.  相似文献   

14.

Background

Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour.

Methodology/Principal Findings

On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue.

Conclusions/Significance

Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region.  相似文献   

15.
16.
 The genus Boronia Sm. section Boronia series Boronia contains species with n=7 (B. megastigma), n=7 or 8 (B. heterophylla), n=8 (B. molloyae) and n=9 (B. purdieana), representing ideal species with which to examine comparative chromosome morphology. Between species there were few chromosomes with similar morphology, indicating numerous genome re-organisations. Karyotypes between and within species of Boronia could be distinguished and inheritance of some chromosomes was observed. Species and hybrids with 2n = 14 or 15 had at least one large chromosome. Chromosome morphology indicated a closer relationship between B. heterophylla and B. molloyae and between B. purdieana and B. megastigma than between these two groups. Whole genomic DNA was extracted from 9 genotypes of Boronia. RAPD bands were analysed and pairwise distance matrices between genotypes were computed. Dendrograms were generated and analysed using unweighted pair-group method with arithmetic average cluster analysis. Dendograms supported cytological results, indicating B. heterophylla and B. molloyae are closely related and clearly distinct from B. megastigma and B. purdieana. The evolution of boronias is discussed. Received February 16, 2001; accepted March 21, 2002 Published online: October 14, 2002 Address of the authors: G. Yan, F. Shan, J. A. Plummer (e-mail: jplummer@cyllene.uwa.edu.au), Plant Sciences, Faculty of Natural and Agricultural Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.  相似文献   

17.
Abstract.Tsetse flies probe more on a heated surface with a trace of uric acid than on one without. Uric acid is one of the components of human sweat and it elicits spike responses from taste hairs on the flies' legs. In this paper it is examined how heat from the surface and taste interact to affect the biting behaviour of Glossina fuscipes fuscipes Newstead 1910 (Diptera: Glossinidae) over successive days of food deprivation. The biting behaviour consists of bouts of probing, both ambulatory and stationary, intercalated with short hops of flight. The number of bouts increases over successive days, whereas the average bout duration does not. Although uric acid alone could not induce the flies to probe, in combination with surface heat it affected the flies greatly. Average bout duration was two‐fold that on a heated surface not treated with uric acid. The frequency of bouts was not affected by uric acid. These experiments and auxiliary ones on mechanoreceptive input and odours lead to the insight that the factors which affect biting behaviour can be viewed as a hierarchy. The hierarchy extends from those that affect the onset of biting to those that affect its course.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号