首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair.  相似文献   

2.
In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme''s SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3.  相似文献   

3.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

4.
5.
Condensin I, which plays an essential role in mitotic chromosome assembly and segregation in vivo, constrains positive supercoils into DNA in the presence of adenosine triphosphate in vitro. Condensin I is constitutively present in a phosphorylated form throughout the HeLa cell cycle, but the sites at which it is phosphorylated in interphase cells differ from those recognized by Cdc2 during mitosis. Immunodepletion, in vitro phosphorylation, and immunoblot analysis using a phospho-specific antibody suggested that the CK2 kinase is likely to be responsible for phosphorylation of condensin I during interphase. In contrast to the slight stimulatory effect of Cdc2-induced phosphorylation of condensin I on supercoiling, phosphorylation by CK2 reduced the supercoiling activity of condensin I. CK2-mediated phosphorylation of condensin I is spatially and temporally regulated in a manner different to that of Cdc2-mediated phosphorylation: CK2-dependent phosphorylation increases during interphase and decreases on chromosomes during mitosis. These findings are the first to demonstrate a negative regulatory mode for condensin I, a process that may influence chromatin structure during interphase and mitosis.  相似文献   

6.
Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that is rapidly activated by DNA strand breaks and signals the presence of DNA lesions by attaching ADP-ribose units to chromatin-associated proteins. The therapeutic applications of PARP inhibitors in potentiating the killing action of ionizing radiation have been well documented and are attracting increasing interest as a cancer treatment. However, the initial kinetics underlying the recognition of multiple DNA lesions by PARP1 and how inhibition of PARP potentiates the activity of DNA-damaging agents are unknown. Here we report the spatiotemporal dynamics of PARP1 recruitment to DNA damage induced by laser microirradiation in single living cells. We provide direct evidence that PARP1 is able to accumulate at a locally induced DNA double strand break. Most importantly, we observed that the rapid accumulation of MRE11 and NBS1 at sites of DNA damage requires PARP1. By determining the kinetics of protein assembly following DNA damage, our study reveals the cooperation between PARP1 and the double strand break sensors MRE11 and NBS1 in the close vicinity of a DNA lesion. This may explain the sensitivity of cancer cells to PARP inhibitors.  相似文献   

7.
8.
The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.  相似文献   

9.
Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3′-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1–PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.  相似文献   

10.
Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site.  相似文献   

11.
12.
Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation. All PARG isoforms were recruited to DNA damage sites except for a mitochondrial localized PARG fragment. Using PARP knock out cells and PARP inhibitors, we showed that PARG recruitment was only partially dependent on PARP-1 and PAR synthesis, indicating a second, PAR-independent recruitment mechanism. We found that PARG interacts with PCNA, mapped a PCNA binding site and showed that binding to PCNA contributes to PARG recruitment to DNA damage sites. This dual recruitment mode of the only nuclear PARG via the versatile loading platform PCNA and by a PAR dependent mechanism likely contributes to the dynamic regulation of this posttranslational modification and ensures the tight control of the switch between efficient DNA repair and cell death.  相似文献   

13.
14.
The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin‐dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80‐ and RING‐dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding‐deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80–BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.  相似文献   

15.
Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.  相似文献   

16.
聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。  相似文献   

17.
18.
Genomic instability, a major hallmark of cancer cells, is caused by incorrect or ineffective DNA repair. Many DNA repair mechanisms cooperate in cells to fight DNA damage, and are generally regulated by post-translational modification of key factors. Poly-ADP-ribosylation, catalyzed by PARP1, is a post-translational modification playing a prominent role in DNA repair, but much less is known about mono-ADP-ribosylation. Here we report that mono-ADP-ribosylation plays an important role in homologous recombination DNA repair, a mechanism essential for replication fork stability and double strand break repair. We show that the mono-ADP-ribosyltransferase PARP14 interacts with the DNA replication machinery component PCNA and promotes replication of DNA lesions and common fragile sites. PARP14 depletion results in reduced homologous recombination, persistent RAD51 foci, hypersensitivity to DNA damaging agents and accumulation of DNA strand breaks. Our work uncovered PARP14 as a novel factor required for mitigating replication stress and promoting genomic stability.  相似文献   

19.
20.
Mitotic chromosome condensation is chiefly driven by the condensin complex. The specific recognition (targeting) of chromosomal sites by condensin is an important component of its in vivo activity. We previously identified the rRNA gene cluster in Saccharomyces cerevisiae as an important condensin-binding site, but both genetic and cell biology data suggested that condensin also acts elsewhere. In order to characterize the genomic distribution of condensin-binding sites and to assess the specificity of condensin targeting, we analyzed condensin-bound sites using chromatin immunoprecipitation and hybridization to whole-genome microarrays. The genomic condensin-binding map shows preferential binding sites over the length of every chromosome. This analysis and quantitative PCR validation confirmed condensin-occupied sites across the genome and in the specialized chromatin regions: near centromeres and telomeres and in heterochromatic regions. Condensin sites were also enriched in the zones of converging DNA replication. Comparison of condensin binding in cells arrested in G(1) and mitosis revealed a cell cycle dependence of condensin binding at some sites. In mitotic cells, condensin was depleted at some sites while enriched at rRNA gene cluster, subtelomeric, and pericentromeric regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号