首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Targeted integration of foreign genes into plant genomes is a much sought-after technology for engineering precise integration structures. Homologous recombination-mediated targeted integration into native genomic sites remained somewhat elusive until made possible by zinc finger nuclease-mediated double-stranded breaks. In the meantime, an alternative approach based on the use of site-specific recombination systems has been developed which enables integration into previously engineered genomic sites (site-specific integration). Follow-up studies have validated the efficacy of the site-specific integration technology in generating transgenic events with a predictable range and stability of expression through successive generations, which are critical features of reliable and practically useful transgenic lines. Any DNA delivery methods can be used for site-specific integration; however, best efficiency is mostly obtained with direct DNA delivery methods such as particle bombardment. Although site-specific integration approach provides unique advantages for producing transgenic plants, it is still not a commonly used method. The present article discusses barriers and solutions for making it readily available to both academic research and applicative use.  相似文献   

2.
Site-specific recombinases are the enzymes that catalyze site-specific recombination between two specific DNA sequences to mediate DNA integration, excision, resolution, or inversion and that play a pivotal role in the life cycles of many microorganisms including bacteria and bacteriophages. These enzymes are classified as tyrosine-type or serine-type recombinases based on whether a tyrosine or serine residue mediates catalysis. All known tyrosine-type recombinases catalyze the formation of a Holliday junction intermediate, whereas the catalytic mechanism of all known serine-type recombinases includes the 180° rotation and rejoining of cleaved substrate DNAs. Both recombinase families are further subdivided into two families; the tyrosine-type recombinases are subdivided by the recombination directionality, and the serine-type recombinases are subdivided by the protein size. Over more than two decades, many different site-specific recombinases have been applied to in vivo genome engineering, and some of them have been used successfully to mediate integration, deletion, or inversion in a wide variety of heterologous genomes, including those from bacteria to higher eukaryotes. Here, we review the recombination mechanisms of the best characterized recombinases in each site-specific recombinase family and recent advances in the application of these recombinases to genomic manipulation, especially manipulations involving site-specific gene integration into heterologous genomes.  相似文献   

3.
4.
Development of an all-fish gene cassette for gene transfer in aquaculture.   总被引:8,自引:0,他引:8  
To develop an all-fish gene cassette suitable for gene transfer in aquaculture, the antifreeze protein (AFP) gene promoter from the ocean pout (Macrozoarces americanus) was analyzed for its ability to direct exogenous gene expression both in vitro and in vivo. The ocean pout AFP (opAFP) gene promoter fused to the bacterial chloramphenicol acetyltransferase (CAT) was functionally analyzed in two fish cell lines and in Japanese medaka embryos. The opAFP gene promoter was active in these systems, as demonstrated by the transient expression of CAT activity. These results suggest that the opAFP gene promoter is useful for many other gene transfer experiments. To facilitate use of the opAFP gene promoter as a common and versatile vehicle for fish gene transfers, an expression vector, opAFP-V, was constructed by linking the 2.1-kb opAFP gene promoter, the 63-bp opAFP gene 5' untranslated sequence, and the 1.2-kb opAFP gene 3' sequence by two unique restriction sites, Bg/II and HpaI, respectively. Thus, genes of interest can be inserted into either the Bg/II site or the HpaI site depending on the length of their 5' untranslated sequence. The complete DNA sequence of opAFP-V was determined to facilitate future detailed analysis of integration and expression of the transgene.  相似文献   

5.
[目的]研究构建稳定表达外源基因、无抗性标记基因的苏云金杆菌(Bacillus thuringiensis简称Bt)工程菌的方法.在构建Bt工程菌时,高拷贝外源质粒的转入导致Bt芽孢数量减少,芽孢形成期延滞,影响Bt菌株的杀虫活力.而且,外源质粒在Bt中的稳定性较差,外源基因容易丢失.将基因整合人染色体是一种构建遗传性状稳定、杀虫活力高的Bt工程菌的有效方法.[方法]本研究采用PCR技术,分两段扩增定位于Bt无晶体突变株XBU001染色体上的trigger factor基因片段作为同源臂,克隆入温度敏感型载体pKSV7,构建了定点整合载体pKTF12.并利用pKTF12质粒将crylAc基因定点整合入XBU001染色体上.[结果]利用载体pKTF12将crylAc定点插入triggerfactor位点,对宿主菌XBU001的正常生长没有影响.重组菌株KCTF12中的crylAc基因能够稳定遗传、表达并形成菱形晶体.与携带高拷贝外源质粒的Bt菌株HTX42相比较,KCTF12具有芽孢数量增多、芽孢形成期提前的优势.[结论]定点整合法是一种构建稳定表达外源基因、无抗性标记基因Bt工程菌的有效方法.  相似文献   

6.
7.
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.  相似文献   

8.
Phage integrases are enzymes that catalyze unidirectional site-specific recombination between the attachment sites of phage and host bacteria, attP and attB, respectively. We recently developed an in vivo intra-molecular site-specific recombination system based on actinophage TG1 serine-type integrase that efficiently acts between attP and attB on a single plasmid DNA in heterologous Escherichia coli cells. Here, we developed an in vivo inter-molecular site-specific recombination system that efficiently acted between the att site on exogenous non-replicative plasmid DNA and the corresponding att site on endogenous plasmid or genomic DNA in E. coli cells, and the recombination efficiencies increased by a factor of ~101–3 in cells expressing TG1 integrase over those without. Moreover, integration of attB-containing incoming plasmid DNA into attP-inserted E. coli genome was more efficient than that of the reverse substrate configuration. Together with our previous result that purified TG1 integrase functions efficiently without auxiliary host factors in vitro, these in vivo results indicate that TG1 integrase may be able to introduce attB-containing circular DNAs efficiently into attP-inserted genomes of many bacterial species in a site-specific and unidirectional manner. This system thus may be beneficial to genome engineering for a wide variety of bacterial species.  相似文献   

9.
Bateman JR  Lee AM  Wu CT 《Genetics》2006,173(2):769-777
Position effects can complicate transgene analyses. This is especially true when comparing transgenes that have inserted randomly into different genomic positions and are therefore subject to varying position effects. Here, we introduce a method for the precise targeting of transgenic constructs to predetermined genomic sites in Drosophila using the C31 integrase system in conjunction with recombinase-mediated cassette exchange (RMCE). We demonstrate the feasibility of this system using two donor cassettes, one carrying the yellow gene and the other carrying GFP. At all four genomic sites tested, we observed exchange of donor cassettes with an integrated target cassette carrying the mini-white gene. Furthermore, because RMCE-mediated integration of the donor cassette is necessarily accompanied by loss of the target cassette, we were able to identify integrants simply by the loss of mini-white eye color. Importantly, this feature of the technology will permit integration of unmarked constructs into Drosophila, even those lacking functional genes. Thus, C31 integrase-mediated RMCE should greatly facilitate transgene analysis as well as permit new experimental designs.  相似文献   

10.
We have developed an effective, easy-to-use two-step system for the site-directed insertion of large genetic constructs into arbitrary positions in the Escherichia coli chromosome. The system uses λ-Red mediated recombineering accompanied by the introduction of double-strand DNA breaks in the chromosome and a donor plasmid bearing the desired insertion fragment. Our method, in contrast to existing recombineering or phage-derived insertion methods, allows for the insertion of very large fragments into any desired location and in any orientation. We demonstrate this method by inserting a 7-kb fragment consisting of a venus-tagged lac repressor gene along with a target lacZ reporter into six unique sites distributed symmetrically about the chromosome. We also demonstrate the universality and repeatability of the method by separately inserting the lac repressor gene and the lacZ target into the chromosome at separate locations around the chromosome via repeated application of the protocol.  相似文献   

11.
Major advances in the use of site-specific recombinases to facilitate sustained gene expression via chromosomal targeting have been made during the past year. New tools for genomic manipulations using this technology include the discovery of epitopes in recombinases that confer nuclear localization, crystal structures that show the precise topology of recombinase-DNA-substrate synaptic complexes, manipulations of the DNA recognition sequences that select for integration over excision of DNA, and manipulations that make changes in gene expression inducible by drug administration. In addition, endogenous eukaryotic and mammalian DNA sequences have been discovered that can support site-specific recombinase-mediated manipulations.  相似文献   

12.
Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade.  相似文献   

13.
The ideal gene-therapy vector for treating genetic disorders should deliver intact therapeutic genes and their essential regulatory elements into the specific "safe genomic site" and realize long-term, self-regulatory expression. For beta-thalassemia gene therapy, viral vectors have been broadly used, but the accompanying insertional mutation and immunogenicity remain problematic. Hence, we aimed to develop new non-viral vectors that are efficient and safe in treating diseases. As previous studies have demonstrated that physiological expression of beta-globin genes requires both a 5' locus control region and 3' specific elements, we constructed a new human chromosome-derived targeting vector to transfer the intact beta-globin gene cluster into K562 cells. The whole beta-globin gene cluster was precisely integrated into the target site and expressed in a self-regulatory pattern. The results proved that the human chromosome-derived vector was specifically targeted to the human genome and this could provide a novel platform for further gene therapy research.  相似文献   

14.
《MABS-AUSTIN》2013,5(8):1367-1380
ABSTRACT

Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.  相似文献   

15.

Objectives

To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins.

Results

AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed “CELiD” DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with “CELiD” DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %.

Conclusions

The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.
  相似文献   

16.
Site-specific integration and excision of pMEA100 in Nocardia mediterranei   总被引:5,自引:0,他引:5  
Summary Nocardia mediterranei strain LBG A3136 contains the 23.7 kb element pMEA100 in a chromosomally integrated form as well as in the free state (Moretti et al. 1985). The integrated form of this element can be excised precisely from the Nocardia chromosome without any accompanying rearrangements in flanking chromosomal DNA. After transfer into plasmid-free mutant strains, pMEA100 reintegrates site specifically into its original chromosomal locus. The exact mapping of the pMEA100 integration site was accomplished by restriction analysis and DNA sequencing. The attachment site of pMEA100, the junctions of its integrated form and plasmid-free chromosomal DNA of N. mediterranei contain an identical 47 bp long sequence which is probably required for site-specific recombination connected with integration and excision of pMEA100. Only one such sequence was found in the chromosome of pMEA100-free N. mediterranei derivatives as suggested by the single integration locus.  相似文献   

17.
Agrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process. We produced transgenic tobacco (Nicotiana tabacum) plants carrying an I-SceI endonuclease recognition site that, upon cleavage with I-SceI, generates DSB. Then, we retransformed these plants with two A. tumefaciens strains: one that allows transient expression of I-SceI to induce DSB and the other that carries a T-DNA with the I-SceI site and an integration selection marker. Integration of this latter T-DNA as full-length and I-SceI-digested molecules into the DSB site was analyzed in the resulting plants. Of 620 transgenic plants, 16 plants integrated T-DNA into DSB at their I-SceI sites; because DSB induces DNA repair, these results suggest that the invading T-DNA molecules target to the DNA repair sites for integration. Furthermore, of these 16 plants, seven plants incorporated T-DNA digested with I-SceI, which cleaves only double-stranded DNA. Thus, T-strand molecules can be converted into double-stranded intermediates before their integration into the DSB sites within the host cell genome.  相似文献   

18.
Currently two site-specific recombinases are available for engineering the mouse genome: Cre from P1 phage and Flp from yeast. Both enzymes catalyze recombination between two 34-base pair recognition sites, lox and FRT, respectively, resulting in excision, inversion, or translocation of DNA sequences depending upon the location and the orientation of the recognition sites. Furthermore, strategies have been designed to achieve site-specific insertion or cassette exchange. The problem with both recombinase systems is that when they insert a circular DNA into the genome (trans event), two cis-positioned recognition sites are created, which are immediate substrates for excision. To stabilize the trans event, functional mutant recognition sites had to be identified. None of the systems, however, allowed efficient selection-free identification of insertion or cassette exchange. Recently, an integrase from Streptomyces phage phiC31 has been shown to function in Schizosaccharomyces pombe and mammalian cells. This enzyme recombines between two heterotypic sites: attB and attP. The product sites of the recombination event (attL and attR) are not substrates for the integrase. Therefore, the phiC31 integrase is ideal to facilitate site-specific insertions into the mammalian genome.  相似文献   

19.
Site-specific integration of targeted DNA into animal cell genomes   总被引:2,自引:0,他引:2  
Koch KS  Aoki T  Wang Y  Atkinson AE  Gleiberman AS  Glebov OK  Leffert HL 《Gene》2000,249(1-2):135-144
  相似文献   

20.
A Web-based design center for vector-based siRNA and siRNA cassette   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号