共查询到20条相似文献,搜索用时 0 毫秒
1.
Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. 总被引:18,自引:8,他引:18
下载免费PDF全文

Human platelet-derived growth factor (PDGF) occurs as three isoforms which are made up of disulfide-bonded A and B chains. The isoforms bind with different affinities to two different but structurally related cell surface receptors. The A type receptor binds all three isoforms (PDGF-AA, PDGF-AB, PDGF-BB) with high affinity, whereas the B type receptor binds PDGF-BB with high affinity, PDGF-AB with lower affinity but does not appear to bind PDGF-AA. We have utilized the differential effects of the three isoforms on actin reorganization and membrane ruffling in human foreskin fibroblasts to probe the idea that ligand-induced receptor dimerization is associated with receptor activation. Actin reorganization was found to be induced only by PDGF-AB and PDGF-BB and is therefore likely to be mediated by the B type receptor. Simultaneous addition of PDGF-AA, or downregulation of the A type receptor blocked the effect of PDGF-AB but not that of PDGF-BB. This is compatible with a model by which PDGF-AB binds to and dimerizes one A and one B type receptor; PDGF-AB therefore requires A type receptors in order to be functionally active at physiological concentrations. In cells with down-regulated A type receptors, high concentrations of PDGF-AB inhibited the effect of PDGF-BB on actin reorganization. We believe that this is due to a monovalent binding of PDGF-AB to the B type receptors which prevents PDGF-BB from dimerizing the receptors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
3.
4.
Eek P Järving R Järving I Gilbert NC Newcomer ME Samel N 《The Journal of biological chemistry》2012,287(26):22377-22386
Lipoxygenases (LOXs) are a key part of several signaling pathways that lead to inflammation and cancer. Yet, the mechanisms of substrate binding and allosteric regulation by the various LOX isoforms remain speculative. Here we report the 2.47-Å resolution crystal structure of the arachidonate 11R-LOX from Gersemia fruticosa, which sheds new light on the mechanism of LOX catalysis. Our crystallographic and mutational studies suggest that the aliphatic tail of the fatty acid is bound in a hydrophobic pocket with two potential entrances. We speculate that LOXs share a common T-shaped substrate channel architecture that gives rise to the varying positional specificities. A general allosteric mechanism is proposed for transmitting the activity-inducing effect of calcium binding from the membrane-targeting PLAT (polycystin-1/lipoxygenase/α-toxin) domain to the active site via a conserved π-cation bridge. 相似文献
5.
Structural and functional analysis of essential pre-mRNA splicing factor Prp19p 总被引:3,自引:0,他引:3
下载免费PDF全文

Ohi MD Vander Kooi CW Rosenberg JA Ren L Hirsch JP Chazin WJ Walz T Gould KL 《Molecular and cellular biology》2005,25(1):451-460
U-box-containing Prp19p is an integral component of the Prp19p-associated complex (the nineteen complex, or NTC) that is essential for activation of the spliceosome. Prp19p makes numerous protein-protein contacts with other NTC components and is required for NTC stability. Here we show that Prp19p forms a tetramer in vitro and in vivo and we map the domain required for its oligomerization to a central tetrameric coiled-coil. Biochemical and in vivo analyses are consistent with Prp19p tetramerization providing an interaction surface for a single copy of its binding partner, Cef1p. Electron microscopy showed that the isolated Prp19p tetramer is an elongated particle consisting of four globular WD40 domains held together by a central stalk consisting of four N-terminal U-boxes and four coiled-coils. These structural and functional data provide a basis for understanding the role of Prp19p as a key architectural component of the NTC. 相似文献
6.
Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes 总被引:4,自引:0,他引:4
Rho GTPases act as key regulators of cellular biochemistry by determining the timing, direction, and amplitude of signal transduction in a number of important pathways. The rate of activation of a GTPase-controlled reaction is limited by the rate of GTP binding to the Rho protein, and this, in turn, depends on the rate that GDP dissociates from the GTPase. The latter is controlled by the action of guanine nucleotide exchange factors (GEFs) that catalyze GDP-GTP exchange by increasing the rate of GDP dissociation. Here, the recently reported structural information for Rho GTPase-GEF complexes and the molecular basis for the specificity of their interactions are discussed. Underscoring the importance of regulating the Rho GTPase activation pathway, genetically unrelated proteins have evolved which complement or mimic the Dbl homology-Pleckstrin homology (DH-PH) domain-containing family of proteins in their ability to catalyze GDP-GTP exchange. In particular, the structure of the mammalian Cdc42 protein bound to the SopE protein from Salmonella typhimurium illustrates how two unrelated protein folds are able to carry out guanine nucleotide exchange by a remarkably similar mechanism. It will be interesting to see if this conservation of mechanism extends to a newly recognized class of GEFs related to the DOCK180 family. 相似文献
7.
Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallographic and biochemical analyses of RuvC from Thermus thermophilus (T.th. RuvC). The crystal structure of T.th. RuvC shows an overall protein fold similar to that of Escherichia coli RuvC, but T.th. RuvC has a more tightly associated dimer interface possibly reflecting its thermostability. The binding mode of a HJ-DNA substrate can be inferred from the shape/charge complementarity between the T.th. RuvC dimer and HJ-DNA, as well as positions of sulfate ions bound on the protein surface. Unexpectedly, the structure of T.th. RuvC homodimer refined at 1.28 Å resolution shows distinct asymmetry near the dimer interface, in the region harboring catalytically important aromatic residues. The observation suggests that the T.th. RuvC homodimer interconverts between two asymmetric conformations, with alternating subunits switched on for DNA strand cleavage. This model provides a structural basis for the ‘nick-counter-nick’ mechanism in HJ resolution, a mode of HJ processing shared by prokaryotic and eukaryotic HJ resolvases. 相似文献
8.
Alessia Ruggiero Flavia Squeglia Maria Romano Luigi Vitagliano Alfonso De Simone 《Journal of biomolecular structure & dynamics》2017,35(6):1322-1330
RpfB is multidomain protein that is crucial for Mycobacterium tuberculosis resuscitation from dormancy. This protein cleaves cell wall peptidoglycan, an essential bacterial cell wall polymer formed by glycan chains of β-(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptide stems. RpfB is structurally complex being composed of five distinct domains, namely a catalytic, a G5 and three DUF348 domains. Here, we have undertaken a combined experimental and computation structural investigations on the entire protein to gain insights into its structure–function relationships. CD spectroscopy and light scattering experiments have provided insights into the protein fold stability and into its oligomeric state. Using the available structure information, we modeled the entire protein structure, which includes the two DUF348 domains whose structure is experimentally unknown, and we analyzed the dynamic behavior of RpfB using molecular dynamics simulations. Present results highlight an intricate mutual influence of the dynamics of the different protein domains. These data provide interesting clues on the functional role of non-catalytic domains of RpfB and on the mechanism of peptidoglycan degradation necessary to resuscitation of M. tuberculosis. 相似文献
9.
Jeffrey E. Vandenengel 《Biochemical and biophysical research communications》2009,378(1):51-733
Structure-switching signaling aptamers are nucleic acids that change shape upon binding to a specific ligand. Previously, we applied a new in vitro selection strategy to isolate structure-switching RNA aptamers responsive to the aminoglycoside antibiotic tobramycin. Here, we report the results of mutational analysis, secondary structure modeling, and ligand-specificity studies that suggest a mechanism for tobramycin-triggered structure switching. 相似文献
10.
Baphilinia Jones Mylliemngap Angshuman Borthakur Devadasan Velmurugan Atanu Bhattacharjee 《Bioinformation》2012,8(14):646-651
Invulnerability of Mycobacterium tuberculosis to various drugs and its persistency has stood as a hurdle in the race against
eradication of the pathogenecity of the bacteria. Identification of novel antituberculosis compounds is highly demanding as the
available drugs are resistant. The ability of the bacteria to surpass the body''s defenses and adapt itself to survive for disease
reactivation is contributed by secreted proteins called resuscitating promoting factors (Rpfs). These factors aid in virulence and
resuscitation from dormancy of the bacteria. Sequence analysis of RpfB was performed and compounds were first screened for
toxicity and high-throughput virtual screening eliminating the toxic compounds. To understand the mechanism of ligand binding
and interaction, molecular docking was performed for the compounds passing through the filter resulting with better docking
studies predicting the possible binding mode of the inhibitors to the protein. Of all the active residues the binding conformation
shows that residues Arg194, Arg196, Glu242, and Asn244 of the RpfB protein play vital role in the enzyme activity and interacts
with the ligands. Promising compounds have been identified in the current study, thus holding promise for design of antituberculosis
drugs. 相似文献
11.
We developed a system to study the function of the ectodomain of RPTPalpha, a transmembrane protein-tyrosine phosphatase, by fusing the HA-epitope tagged ectodomain of RPTPalpha to the transmembrane and intracellular domain of the epidermal growth factor receptor, EGFR, a receptor protein-tyrosine kinase that is activated by dimerization. Although the use of chemical crosslinkers shows that preformed HARPTPalpha-EGFR dimers exist, bivalent anti-HA-tag antibody activated HARPTPalpha-EGFR chimeras, suggesting this system may be used to study regulation of dimerization. We used this system to show that newborn calf serum may contain (a) potential ligand(s) for RPTPalpha. Our results suggest that RPTPalpha dimerization and thus activity may be affected by ligand binding. 相似文献
12.
13.
Eugene Palovcak Lucie Delemotte Michael L. Klein Vincenzo Carnevale 《The Journal of general physiology》2015,146(1):37-50
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate. 相似文献
14.
The A3243G mutation within the human mitochondrial (hs mt) tRNALeuUUR gene is associated with maternally inherited deafness and diabetes (MIDD) and other mitochondrial encephalopathies. One of the most pronounced structural effects of this mutation is the disruption of the native structure through stabilization of a high-affinity dimeric complex. We conducted a series of studies that address the structural properties of this tRNA dimer, and we assessed its formation under physiological conditions. Enzymatic probing was used to directly define the dimeric interface for the complex, and a discrete region of the D-stem and loop of hs mt tRNALeuUUR was identified. The dependence of dimerization on magnesium ions and temperature was also tested. The formation of the tRNA dimer is influenced by temperature, with dimerization becoming more efficient at physiological temperature. Complexation of the mutant tRNA is also affected by the amount of magnesium present, and occurs at concentrations present intracellularly. Terbium probing experiments revealed a specific metal ion-binding site localized at the site of the A3243G mutation that is unique to the dimer structure. This metal ion-binding site presents a striking parallel to dimeric complexes of viral RNAs, which use the same hexanucleotide sequence for complexation and feature a similarly positioned metal ion-binding site within the dimeric structure. Taken together, these results indicate that the unique dimeric complex formed by the hs mt tRNALeuUUR A3243G mutant exhibits interesting similarities to biological RNA dimers, and may play a role in the loss of function caused by this mutation in vivo. 相似文献
15.
Chrencik JE Brooun A Zhang H Mathews II Hura GL Foster SA Perry JJ Streiff M Ramage P Widmer H Bokoch GM Tainer JA Weckbecker G Kuhn P 《Journal of molecular biology》2008,380(5):828-843
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network. 相似文献
16.
Larsson KM Jordan A Eliasson R Reichard P Logan DT Nordlund P 《Nature structural & molecular biology》2004,11(11):1142-1149
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides into deoxyribonucleotides, which constitute the precursor pools used for DNA synthesis and repair. Imbalances in these pools increase mutational rates and are detrimental to the cell. Balanced precursor pools are maintained primarily through the regulation of the RNR substrate specificity. Here, the molecular mechanism of the allosteric substrate specificity regulation is revealed through the structures of a dimeric coenzyme B12-dependent RNR from Thermotoga maritima, both in complexes with four effector-substrate nucleotide pairs and in three complexes with only effector. The mechanism is based on the flexibility of loop 2, a key structural element, which forms a bridge between the specificity effector and substrate nucleotides. Substrate specificity is achieved as different effectors and their cognate substrates stabilize specific discrete loop 2 conformations. The mechanism of substrate specificity regulation is probably general for most class I and class II RNRs. 相似文献
17.
Honbou K Minakami R Yuzawa S Takeya R Suzuki NN Kamakura S Sumimoto H Inagaki F 《The EMBO journal》2007,26(4):1176-1186
The superoxide-producing phagocyte NADPH oxidase is activated during phagocytosis to destroy ingested microbes. The adaptor protein p40phox associates via the PB1 domain with the essential oxidase activator p67phox, and is considered to function by recruiting p67phox to phagosomes; in this process, the PX domain of p40phox binds to phosphatidylinositol 3-phosphate [PtdIns(3)P], a lipid abundant in the phagosomal membrane. Here we show that the PtdIns(3)P-binding activity of p40phox is normally inhibited by the PB1 domain both in vivo and in vitro. The crystal structure of the full-length p40phox reveals that the inhibition is mediated via intramolecular interaction between the PB1 and PX domains. The interface of the p40phox PB1 domain for the PX domain localizes on the opposite side of that for the p67phox PB1 domain, and thus the PB1-mediated PX regulation occurs without preventing the PB1-PB1 association with p67phox. 相似文献
18.
Mitchell DC Bryan BA Liu L Hu XH Huang XQ Ji WK Chen PC Hu WF Liu JP Zhang J Liu M Li DW 《Current molecular medicine》2011,11(6):465-480
The Rho-family of small GTPase specific guanine nucleotide exchange factor, GEFT, is expressed at high levels in adult human excitable tissues including the brain, heart, and skeletal muscle. Previously, we demonstrated that GEFT is specifically expressed in the adult mouse hippocampus and cerebellum, and that overexpression of this protein can result in neurite and dendrite remodeling. This finding prompted us to explore the expression of GEFT in other tissues, which share common developmental ancestry to the nervous system, specifically the ocular system. Using immunohistochemical analysis specific for GEFT protein expression, we observed the highest ocular expression of GEFT occurring in the neuroblastic layer and differentiating lens fibers of the late-stage mouse embryo, and in the postnatal corneal epithelium, lens epithelium, and throughout the retina. Exogenous expression of GEFT in N/N1003A rabbit lens epithelial cells induced lens fiber differentiation as reflected by cell elongation and lentoid formation, as well as a strong increase in β-crystallin and filensin expression. Moreover, transfection of lens epithelial cells with GEFT resulted in a Rac-1 mediated up-regulation of αA-, αB-, βB-, γC-, or γF-crystallin promoter activities that is in part dependent on the nuclear localization of Rac1. Furthermore, pharmacological inhibition of Rac1 blocked GEFT-induced N/N1003A lens fiber differentiation and βB-crystallin expression in ex vivo mouse lens explants. These results demonstrate for the first time a role for GEFT in lens cell differentiation and mouse eye development. Moreover, GEFT regulation of lens differentiation and eye development occurs through a Rac1-dependent mechanism. 相似文献
19.
20.
Galina R. Demina Vadim D. Nikitushkin Margarita O. Shleeva Olga B. Riabova Alexander Yu. Lepioshkin Vadim A. Makarov Arseny S. Kaprelyants 《Annals of clinical microbiology and antimicrobials》2017,16(1):69