首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.  相似文献   

5.
Vertebrate genomes contain thousands of conserved noncoding elements (CNEs) that often function as tissue-specific enhancers. In this study, we have identified CNEs in human, dog, chicken, Xenopus, and four teleost fishes (zebrafish, stickleback, medaka, and fugu) using elephant shark, a cartilaginous vertebrate, as the base genome and investigated the evolution of these ancient vertebrate CNEs (aCNEs) in bony vertebrate lineages. Our analysis shows that aCNEs have been evolving at different rates in different bony vertebrate lineages. Although 78-83% of CNEs have diverged beyond recognition ("lost") in different teleost fishes, only 24% and 40% have been lost in the chicken and mammalian lineages, respectively. Relative rate tests of substitution rates in CNEs revealed that the teleost fish CNEs have been evolving at a significantly higher rate than those in other bony vertebrates. In the ray-finned fish lineage, 68% of aCNEs were lost before the divergence of the four teleosts. This implicates the "fish-specific" whole-genome duplication in the accelerated evolution and the loss of a large number of both copies of duplicated CNEs in teleost fishes. The aCNEs are rich in tissue-specific enhancers and thus many of them are likely to be evolutionarily constrained cis-regulatory elements. The rapid evolution of aCNEs might have affected the expression patterns driven by them. Transgenic zebrafish assay of some human CNE enhancers that have been lost in teleosts has indicated instances of conservation or changes in trans-acting factors between mammals and fishes.  相似文献   

6.
7.
The hexose supply and subsequent metabolism are crucial for the operations of the iono- and osmoregulatory mechanisms in fish, but how hexose is transported and supplied to cells of the ionoregulatory epithelia is unknown. Three zebrafish glucose transporters (zGLUTs), zGLUT1a, -13.1, and -6, were previously found to respectively be expressed by ionocytes (Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing, and H(+)-ATPase-rich cells) and adjacent energy-depositing cells [glycogen-rich (GR) cells] in zebrafish skin and gills (32). The present study aimed to test if the transport kinetics of these three zGLUTs differ, and if the transport functional differences are of physiological relevance to the respective functions of epithelial cells. The three zGLUTs expressed by Xenopus laevis oocytes revealed different d-glucose transport kinetics; zGLUT13.1 showed the lowest Michaelis constant (K(m)), whereas zGLUT6 had the highest K(m) and maximal velocity. In morpholino injection experiments, translational knockdown of zGLUT1a and -13.1, respectively, impaired Cl(-)/Ca(2+) and Na(+)/Ca(2+) uptake, but loss-of-function of zGLUT6 did not cause a significant effect on ion uptake functions in zebrafish. Based on these results, zGLUT1a and -13.1 appear to be superior to zGLUT6 in competing for glucose under a situation of low blood glucose due to extensive energy consumption, whereas, in a high blood glucose situation, zGLUT6 is able to absorb the excess glucose for energy deposition. The timely and sufficient supply of energy to ionocytes so that they can carry out ion regulation is definitely a more important event than storing energy in GR cells, particularly when acute environmental change disturbs the ion balance in zebrafish.  相似文献   

8.
Wang H 《Marine Genomics》2008,1(2):69-78
Clock (Circadian locomotor output cycle kaput) was the first vertebrate circadian clock gene identified in a mouse forward genetics mutagenesis screen. It encodes a bHLH-PAS protein that is highly conserved throughout evolution. Tetrapods also have the second Clock gene, Clock2 or Npas2 (Neuronal PAS domain protein 2). Conversely, the fruit fly, an invertebrate, has only one clock gene. Interrogation of the five teleost fish genome databases revealed that the zebrafish and the Japanese pufferfish (fugu) each have three clock genes, whereas the green spotted pufferfish (tetraodon), the Japanese medaka fish and the three-spine stickleback each have two clock genes. Phylogenetic and splice site analyses indicated that zebrafish and fugu each have two clock1 genes, clock1a and clock1b and one clock2; tetraodon also have clock1a and clock1b but do not have clock2; and medaka and stickleback each have clock1b and one clock2. Genome neighborhood analysis further showed that clock1a/clock1b in zebrafish, fugu and tetraodon is an ancient duplicate. While the dN/dS ratios of these three fish clock duplicates are all <1, indicating that purifying selection has acted upon them; the Tajima relative rate test showed that all three fish clock duplicates have asymmetric evolutionary rates, implicating that one of these duplicates have been under positive selection or relaxed functional constraint. These results support the view that teleost fish clock genes were generated from an ancient genome-wide duplication, and differential gene loss after the duplication resulted in retention of different ancient duplicates in different teleost fishes, which could have contributed to the evolution of the distinct fish circadian clock mechanisms.  相似文献   

9.
The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco(2) between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na(+)/H(+) exchangers (NHE3) and Na(+)-K(+)-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis.  相似文献   

10.
Hashimoto H  Uji S  Kurokawa T  Washio Y  Suzuki T 《Gene》2007,387(1-2):126-132
The lefty gene encodes a member of the TGF-beta superfamily that regulates L-R axis formation during embryogenesis via antagonistic activity against Nodal, another TGF-beta superfamily member. Both mouse and zebrafish have two lefty genes, lefty1 and lefty2. Interestingly, the expression domains of mouse and zebrafish lefty are different from one another. At present, the orthology and functional diversity of the mouse and zebrafish lefty genes are not clear. Here, we report that flounder and two fugu species, Takifugu and Tetraodon, have a single lefty gene in their genomes. In addition, we provide evidence that the mouse lefty genes were duplicated on a single chromosome but the zebrafish lefty genes arose from a whole-genome duplication that occurred early in the divergence of ray-finned fishes. These independent origins likely explain the difference in the expression domains of the mouse and zebrafish lefty gene pairs. Furthermore, we found that the duplication corresponding to the zebrafish lefty2 gene was lost from the fugu genome, suggesting that loss of lefty2 in the fugu/flounder lineage occurred after its divergence from the zebrafish lineage. During L-R patterning, the single lefty gene of flounder covers two expression domains, the left side of the dorsal diencephalon and the left LPM, which are regulated separately by lefty1 and lefty2 in zebrafish. We infer that the lefty genes of the ray-finned fishes and mammals underwent independent gene duplication events that resulted in independent regulation of lefty expression.  相似文献   

11.
It has been suggested that the increase in the number of Hox genes may have been one of the key events in vertebrate evolution. Invertebrates have one Hox cluster, while mammals have four. Interestingly, the number of Hox gene clusters is greater in the teleost fishes, zebrafish and medaka, than in mouse and human. The greater number of Hox clusters in the teleosts suggests that Hox gene duplication events have occurred during the radiation of ray-finned fishes. The question is when the Hox gene duplication event(s) that lead to seven Hox clusters in the teleosts actually occurred.We have addressed this question by studying the Hox genes in the bichir, Polypterus palmas. A preliminary PCR-estimation of the number of Hox genes suggests that Polypterus has five different Hox9 cognate group genes, which may be an indication of more than four Hox clusters in the bichir.  相似文献   

12.
通过生物信息学手段对9种硬骨鱼转座组进行注释。结果表明9种硬骨鱼类转座组大小和构成差异显著,其转座组含量从高到低分别为斑马鱼、矛尾鱼、青鳉鱼、罗非鱼、花斑剑尾鱼、大西洋鳕鱼、三刺鱼、金娃娃和红鳍东方鲀,转座子含量和基因组大小呈正相关。DNA转座子在硬骨鱼类中具有多样性高和含量差异大的特点(0.50%–38.37%),是硬骨鱼类转座组差异的主要决定因素,其中h AT和Tc/Mariner超家族是硬骨鱼类主要的DNA转座子。RNA转座子在硬骨鱼类中也具有多样性高的特点,其中LINE转座子占硬骨鱼类基因组的0.53%–5.75%,共检测到14个超家族分布,其中L1、L2、RTE和Rex转座子扩增较为明显,LTR转座子除了在斑马鱼和三刺鱼中含量达到5.58%和2.51%,在大多硬骨鱼类基因组中的含量低于2%,在硬骨鱼类中共检测到6个LTR转座子(Copia、DIRS、ERV、Gypsy、Ngaro和Pao)超家族分布,其中扩增最为明显的是Gypsy。而SINE转座子在硬骨鱼类中扩增最弱,仅在斑马鱼和矛尾鱼中分别达到3.28%和5.64%,在其他7个物种中低于1%。SINE中t RNA、5S和MIR三个超家族在部分硬骨鱼类中有一定程度扩增。本研究表明硬骨鱼类转座组具有多样性丰富、差异大的特点,转座组差异与硬骨鱼基因组大小有很强的相关性,转座组是决定硬骨鱼基因组大小的重要因素。  相似文献   

13.
The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species.  相似文献   

14.

Background

Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish.

Methodology/Principal Findings

Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (KA/KS) in TAARs tended to be higher than those in ORs and V2Rs.

Conclusions/Significance

Frequent gene gains/losses and high KA/KS in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors.  相似文献   

15.
The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.  相似文献   

16.
The diversity of tooth location in teleost fishes provides an excellent system for comparing genetic divergence between teeth in different species (phylogenetic homologs) with divergence between teeth within one species (iterative homologs). We have chosen to examine the expression of three members of the bone morphogenetic protein (Bmp) family because they are known to play multiple roles in tooth development and evolution in tetrapod vertebrates. We characterized expression of Bmp2a, Bmp2b, and Bmp4 during the development of oral and pharyngeal dentitions in three species of teleost fishes, the zebrafish (Danio rerio), Mexican tetra (Astyanax mexicanus), and Japanese medaka (Oryzias latipes). We found that expression in teleosts is generally highly conserved, with minor differences found among both iteratively homologous and phylogenetically homologous teeth. Expression of orthologous genes differs in several ways between the teeth of teleost fishes and those of the mouse, but between these vertebrate groups the summed expression pattern of Bmp genes is highly conserved. Significantly, the toothless oral region of the zebrafish lacks Bmp expression domains found in teleosts with oral teeth, implicating these genes in evolutionary tooth loss. We conclude that Bmp expression has been largely conserved in vertebrate tooth development over evolutionary time, and that loss of Bmp expression is correlated with region-specific loss of the dentition in a major group of fishes.  相似文献   

17.
There are approximately 25 000 species in the division Teleostei and most are believed to have arisen during a relatively short period of time ca. 200 Myr ago. The discovery of 'extra' Hox gene clusters in zebrafish (Danio rerio), medaka (Oryzias latipes), and pufferfish (Fugu rubripes), has led to the hypothesis that genome duplication provided the genetic raw material necessary for the teleost radiation. We identified 27 groups of orthologous genes which included one gene from man, mouse and chicken, one or two genes from tetraploid Xenopus and two genes from zebrafish. A genome duplication in the ancestor of teleost fishes is the most parsimonious explanation for the observations that for 15 of these genes, the two zebrafish orthologues are sister sequences in phylogenies that otherwise match the expected organismal tree, the zebrafish gene pairs appear to have been formed at approximately the same time, and are unlinked. Phylogenies of nine genes differ a little from the tree predicted by the fish-specific genome duplication hypothesis: one tree shows a sister sequence relationship for the zebrafish genes but differs slightly from the expected organismal tree and in eight trees, one zebrafish gene is the sister sequence to a clade which includes the second zebrafish gene and orthologues from Xenopus, chicken, mouse and man. For these nine gene trees, deviations from the predictions of the fish-specific genome duplication hypothesis are poorly supported. The two zebrafish orthologues for each of the three remaining genes are tightly linked and are, therefore, unlikely to have been formed during a genome duplication event. We estimated that the unlinked duplicated zebrafish genes are between 300 and 450 Myr. Thus, genome duplication could have provided the genetic raw material for teleost radiation. Alternatively, the loss of different duplicates in different populations (i.e. 'divergent resolution') may have promoted speciation in ancient teleost populations.  相似文献   

18.
The epidermis serves as a barrier protecting organs and tissues from the environment, and comprises many types of cells. A cell renewal system is established in epidermis: old epithelial cells are replaced by newly differentiated cells, which are derived from epidermal stem cells located near basement membrane. In order to examine the mechanism of epidermal development, we isolated a novel gene expressed in Xenopus epidermis and named the gene Xenopus polka dots (Xpod) from its polka dot-like expression pattern throughout larval periods. Several immunohistochemical examinations showed that the Xpod-expressing cell type is neither p63-positive epidermal stem cells, nor the α-tubulin-positive ciliated cells, but a subset of the foxi1e-positive ionocytes. The forced gene expression of foxi1e caused the suppression of Xpod expression, while Xpod showed no effect on foxi1e expression. In a comparison of several osmotic conditions, we found that hypertonic culture caused the increase in number of the Xpod-expressing cell, whereas number of the foxi1e-expressing cells was reduced under the hypertonic condition. These results show the possibility that Xpod is involved in the establishment of a certain subpopulation of ionocytes under hypertonic conditions.  相似文献   

19.
Zebrafish epidermal ionocytes are analogous to mammalian kidney cells in terms of expression and function of ion transporters. In this review, we summarize current findings about the development of the zebrafish epidermis and demonstrate how the zebrafish regulate stress acclimation through induction of cell differentiation. In addition, cellular homologies between zebrafish epidermal ionocytes and mammalian kidney cells are presented to show the potential of zebrafish epidermis as an in vivo model to study the development and function of mammalian cells.  相似文献   

20.
We mapped 633 markers (488 AFLPs, 28 RAPDs, 34 IRSs, 75 ESTs, 4 STSs, and 4 phenotypic markers) for the Medaka Oryzias latipes, a teleost fish of the order Beloniformes. Linkage was determined using a reference typing DNA panel from 39 cell lines derived from backcross progeny. This panel provided unlimited DNA for the accumulation of mapping data. The total map length of Medaka was 1354.5 cM and 24 linkage groups were detected, corresponding to the haploid chromosome number of the organism. Thirteen to 49 markers for each linkage group were obtained. Conserved synteny between Medaka and zebrafish was observed for 2 independent linkage groups. Unlike zebrafish, however, the Medaka linkage map showed obvious restriction of recombination on the linkage group containing the male-determining region (Y) locus compared to the autosomal chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号