共查询到20条相似文献,搜索用时 15 毫秒
1.
Lisa Schubert Teresa Ho Saskia Hoffmann Peter Haahr Claire Guérillon Niels Mailand 《EMBO reports》2017,18(11):1991-2003
Single‐stranded DNA (ssDNA) regions form as an intermediate in many DNA‐associated transactions. Multiple cellular proteins interact with ssDNA via the oligonucleotide/oligosaccharide‐binding (OB) fold domain. The heterotrimeric, multi‐OB fold domain‐containing Replication Protein A (RPA) complex has an essential genome maintenance role, protecting ssDNA regions from nucleolytic degradation and providing a recruitment platform for proteins involved in responses to replication stress and DNA damage. Here, we identify the uncharacterized protein RADX (CXorf57) as an ssDNA‐binding factor in human cells. RADX binds ssDNA via an N‐terminal OB fold cluster, which mediates its recruitment to sites of replication stress. Deregulation of RADX expression and ssDNA binding leads to enhanced replication fork stalling and degradation, and we provide evidence that a balanced interplay between RADX and RPA ssDNA‐binding activities is critical for avoiding these defects. Our findings establish RADX as an important component of cellular pathways that promote DNA replication integrity under basal and stressful conditions by means of multiple ssDNA‐binding proteins. 相似文献
2.
ATMTel1 and ATRRad3 checkpoint kinases phosphorylate the C‐terminus of histone H2AX (H2A in yeasts) in chromatin flanking DNA damage, establishing a recruitment platform for checkpoint and repair proteins. Phospho‐H2A/X (γH2A/X)‐binding proteins at double‐strand breaks (DSBs) have been characterized, but those required for replication stress responses are unknown. Here, we present genetic, biochemical, small angle X‐ray scattering (SAXS), and X‐ray structural studies of the Schizosaccharomyces pombe Brc1, a 6‐BRCT‐domain protein that is structurally related to Saccharomyces cerevisiae Rtt107 and mammalian PTIP. Brc1 binds γH2A to form spontaneous and DNA damage‐induced nuclear foci. Spontaneous Brc1 foci colocalize with ribosomal DNA repeats, a region prone to fork pausing and genomic instability, whereas DNA damage‐induced Brc1 foci colocalize with DSB response factors. γH2A binding is critical for Brc1 function. The 1.45 Å resolution crystal structure of Brc1–γH2A complex shows how variable BRCT insertion loops sculpt tandem‐BRCT phosphoprotein‐binding pockets to facilitate unique phosphoprotein‐interaction specificities, and unveils an acidic DNA‐mimicking Brc1 surface. From these results, Brc1 docking to γH2A emerges as a critical chromatin‐specific response to replication‐associated DNA damage. 相似文献
3.
D Roeland Boer José A Ruíz‐Masó José R López‐Blanco Alexander G Blanco Mireia Vives‐Llàcer Pablo Chacón Isabel Usón F Xavier Gomis‐Rüth Manuel Espinosa Oscar Llorca Gloria del Solar Miquel Coll 《The EMBO journal》2009,28(11):1666-1678
RepB initiates plasmid rolling‐circle replication by binding to a triple 11‐bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full‐length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin‐binding and catalytic domains show a three‐layer α–β–α sandwich fold. The active site is positioned at one of the faces of the β‐sheet and coordinates a Mn2+ ion at short distance from the essential nucleophilic Y99. The oligomerization domains (ODs), each consisting of four α‐helices, together define a compact ring with a central channel, a feature found in ring helicases. The toroidal arrangement of RepB suggests that, similar to ring helicases, it encircles one of the DNA strands during replication to confer processivity to the replisome complex. The catalytic domains appear to be highly mobile with respect to ODs. This mobility may account for the adaptation of the protein to two distinct DNA recognition sites. 相似文献
4.
Servant L Bieth A Hayakawa H Cazaux C Hoffmann JS 《Journal of molecular biology》2002,315(5):1039-1047
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells. 相似文献
5.
Taneja P Boche I Hartmann H Nasheuer HP Grosse F Fanning E Weisshart K 《FEBS letters》2007,581(21):3973-3978
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end. 相似文献
6.
John A. Bryant 《Plant biosystems》2013,147(4-6):855-863
Abstract The initiation of DNA replication is a key step in the cell division cycle and in DNA endoreduplication. Initiation of replication takes place at specific places in chromosomes known as replication origins. These are subject to temporal regulation within the cell cycle and may also be regulated as a function of plant development. In yeast, replication origins are recognised and bound by three different groups of proteins at different stages of the cell cycle. Of these, the MCM proteins are the most likely to be involved in activating the origins in order to facilitate initiation. MCM-like proteins also occur in plants, but have not been characterised in detail. Other proteins which bind to origins have been identified, as has a protein with a strong affinity for ds-ss junctions in DNA molecules. 相似文献
7.
Topalova D Ugrinova I Pashev IG Pasheva EA 《The international journal of biochemistry & cell biology》2008,40(8):1536-1542
The high mobility group box (HMGB) 1 protein is a very abundant and conserved protein that is implicated in many key cellular events but its functions within the nucleus remain elusive. The role of this protein in replication of closed circular DNA containing a eukaryotic origin of replication has been studied in vitro by using native and recombinant HMGB1 as well as various modified HMGB1 preparations such as truncated protein, lacking its C-terminal tail, in vivo acetylated protein, and recombinant HMGB1 phosphorylated in vitro by protein kinase C (PKC). Native HMGB1 extracted from tumour cells inhibits replication and this effect is reduced upon acetylation and completely abolished upon removal of the acidic C-terminal tail. Recombinant HMGB1, however, fails to inhibit replication but it acquires such a property following in vitro phosphorylation by PKC. 相似文献
8.
The fidelity of DNA replication is achieved in a multiplicative process encompassing nucleobase selection and insertion, removal of misinserted nucleotides by exonuclease activity, and enzyme dissociation from primer/templates that are misaligned due to mispairing. In this study, we have evaluated the effect of altering these kinetic processes on the dynamics of translesion DNA replication using the bacteriophage T4 replication apparatus as a model system. The effect of enhancing the processivity of the T4 DNA polymerase, gp43, on translesion DNA replication was evaluated using a defined in vitro assay system. While the T4 replicase (gp43 in complex with gp45) can perform efficient, processive replication using unmodified DNA, the T4 replicase cannot extend beyond an abasic site. This indicates that enhancing the processivity of gp43 does not increase unambiguously its ability to perform translesion DNA replication. Surprisingly, the replicase composed of an exonuclease-deficient mutant of gp43 was unable to extend beyond the abasic DNA lesion, thus indicating that molecular processes involved in DNA polymerization activity play the predominant role in preventing extension beyond the non-coding DNA lesion. Although neither T4 replicase complex could extend beyond the lesion, there were measurable differences in the stability of each complex at the DNA lesion. Specifically, the exonuclease-deficient replicase dissociates at a rate constant, k(off), of 1.1s(-1) while the wild-type replicase remains more stably associated at the site of DNA damage by virtue of a slower measured rate constant (k(off) 0.009s(-1)). The increased lifetime of the wild-type replicase suggests that idle turnover, the partitioning of the replicase from its polymerase to its exonuclease active site, may play an important role in maintaining fidelity. Further attempts to perturb the fidelity of the T4 replicase by substituting Mn(2+) for Mg(2+) did not significantly enhance DNA synthesis beyond the abasic DNA lesion. The results of these studies are interpreted with respect to current structural information of gp43 alone and complexed with gp45. 相似文献
9.
Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity. 相似文献
10.
Colleen C. Caldwell 《Critical reviews in biochemistry and molecular biology》2020,55(5):482-507
Abstract The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making. 相似文献
11.
A 17S multiprotein form of murine cell DNA polymerase mediates polyomavirus DNA replication in vitro
Yan Wu Robert Hickey Kenneth Lawlor Philip Wills Fang Yu Harvey Ozer Robyn Starr Jiang Yuan Quan Marietta Lee Linda Malkas 《Journal of cellular biochemistry》1994,54(1):32-46
We have identified and purified a multiprotein form of DNA polymerase from the murine mammary carcinoma cell line (FM3A) using a series of centrifugation, polyethylene glycol precipitation, and ion-exchange chromatography steps. Proteins and enzymatic activities associated with this mouse cell multiprotein form of DNA polymerase include the DNA polymerases α and δ, DNA primase, proliferating cell nuclear antigen (PCNA), DNA ligase I, DNA helicase, and DNA topoisomerases I and II. The sedimentation coefficient of the multiprotein form of DNA polymerase is 17S, as determined by sucrose density gradient analysis. The integrity of the murine cell multiprotein form of DNA polymerase is maintained after treatment with detergents, salt, RNase, DNase, and after chromatography on DE52-cellulose, suggesting that the association of the proteins with one another is independent of nonspecific interaction with other cellular macromolecular components. Most importantly, we have demonstrated that this complex of proteins is fully competent to replicate polyomavirus DNA in vitro. This result implies that all of the cellular activities required for large T-antigen dependent in vitro polyomavirus DNA synthesis are present within the isolated 17S multiprotein form of the mouse cell DNA replication activities. A model is proposed to represent the mammalian Multiprotein DNA Replication Complex (MRC) based on the fractionation and chromatographic profiles of the individual proteins found to co-purify with the complex. 相似文献
12.
Grazia Pellicanò Mohammed Al Mamun Dolores Jurado-Santiago Sara Villa-Hernández Xingyu Yin Michele Giannattasio Michael C. Lanz Marcus B. Smolka Joseph Yeeles Katsuhiko Shirahige Miguel García-Díaz Rodrigo Bermejo 《Molecular cell》2021,81(13):2778-2792.e4
- Download : Download high-res image (194KB)
- Download : Download full-size image
13.
Kara A Bernstein Ivana Sunjevaric Marco Fumasoni Rebecca C Burgess Marco Foiani Dana Branzei Rodney Rothstein 《The EMBO journal》2009,28(7):915-925
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund–Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation‐of‐function alleles of SGS1 that suppress the slow growth of top3Δ and rmi1Δ cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild‐type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1‐D664Δ, unlike sgs1Δ, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication‐associated X‐shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1‐D664Δ allele exhibits increased spontaneous RPA foci, suggesting that the persistent X‐structures may contain single‐stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair. 相似文献
14.
Bermudez VP Farina A Raghavan V Tappin I Hurwitz J 《The Journal of biological chemistry》2011,286(33):28963-28977
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis. 相似文献
15.
Wollmann Y Schmidt U Wieland GD Zipfel PF Saluz HP Hänel F 《Journal of cellular biochemistry》2007,102(1):171-182
We investigated the physical association of the DNA topoisomerase IIbeta binding protein 1 (TopBP1), involved in DNA replication and repair but also in regulation of apoptosis, with poly(ADP-ribose) polymerase-1 (PARP-1). This enzyme plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. It was shown that the sixth BRCA1 C-terminal (BRCT) domain of TopBP1 interacts with a protein fragment of PARP-1 in vitro containing the DNA-binding and the automodification domains. More significantly, the in vivo interaction of endogenous TopBP1 and PARP-1 proteins could be shown in HeLa-S3 cells by co-immunoprecipitation. TopBP1 and PARP-1 are localized within overlapping regions in the nucleus of HeLa-S3 cells as shown by immunofluorescence. Exposure to UVB light slightly enhanced the interaction between both proteins. Furthermore, TopBP1 was detected in nuclear regions where poly(ADP-ribose) (PAR) synthesis takes place and is ADP-ribosylated by PARP-1. Finally, cellular (ADP-ribosyl)ating activity impairs binding of TopBP1 to Myc-interacting zinc finger protein-1 (Miz-1). The results indicate an influence of post-translational modifications of TopBP1 on its function during DNA repair. 相似文献
16.
《Critical reviews in biochemistry and molecular biology》2013,48(3):211-221
AbstractProteins containing Bromo Adjacent Homology (BAH) domain are often associated with biological processes involving chromatin, and mutations in BAH domains have been found in human diseases. A number of structural and functional studies have revealed that the BAH domain plays diverse and versatile roles in chromatin biology, including protein–protein interactions, recognition of methylated histones and nucleosome binding. Here we review recent developments in structural studies of the BAH domain, and intend to place the structural results in the context of biological functions of the BAH domain-containing proteins. A converging theme from the structural studies appears that the predominantly β-sheet fold of the BAH domain serves as a scaffold, and function-specific structural features are incorporated at the loops connecting the β-strands and surface-exposed areas. The structures clearly specified regions critical for protein–protein interactions, located the position of methyllysine-binding site and implicated areas important for nucleosome binding. The structural results provided valuable insights into the molecular mechanisms of BAH domains in molecular recognitions, and the information should greatly facilitate mechanistic understanding of BAH domain proteins in chromatin biology. 相似文献
17.
Su-Min Kang 《Biochemical and biophysical research communications》2009,386(1):55-4534
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication. 相似文献
18.
Turgay Kilic Alexander N. Popov Amelie Burk-Krner Anna Koromyslova Harald zur Hausen Timo Bund Grant S. Hansman 《Acta Crystallographica. Section D, Structural Biology》2019,75(5):498-504
Bovine meat and milk factors (BMMFs) are circular, single‐stranded episomal DNAs that have been detected in bovine meat and milk products. BMMFs are thought to have roles in human malignant and degenerative diseases. BMMFs encode a replication initiator protein (Rep) that is actively transcribed and translated in human cells. In this study, a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Å resolution using X‐ray crystallography. The overall structure of the MSBI1.176 WH1 domain was remarkably similar to other Rep structures, despite having a low (28%) amino‐acid sequence identity. The MSBI1.176 WH1 domain contained elements common to other Reps, including five α‐helices, five β‐strands and a hydrophobic pocket. These new findings suggest that the MSBI1.176 Rep might have comparable roles and functions to other known Reps of different origins. 相似文献
19.
DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)‐rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T‐rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low‐efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. 相似文献
20.
Das A Fu ZQ Tempel W Liu ZJ Chang J Chen L Lee D Zhou W Xu H Shaw N Rose JP Ljungdahl LG Wang BC 《Proteins》2007,67(1):167-176
The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M. thermoacetica. 相似文献