共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of icilin, a potent agonist of transient receptor potential ankyrin 1 (TRPA1) and TRPM8, on glycinergic transmission was examined in mechanically isolated rat medullary dorsal horn neurons by use of the conventional whole-cell patch-clamp technique. Icilin increased the frequency of glycinergic spontaneous miniature inhibitory post-synaptic currents (mIPSCs) in a dose-dependent manner. Either allyl isothiocyanate(AITC) or cinnamaldehyde, other TRPA1 agonists, also increased mIPSC frequency, but the extent of facilitation induced by AITC or cinnamaldehyde was less than that induced by icilin. However, menthol, a TRPM8 agonist, had no facilitatory effect on glycinergic mIPSCs. The icilin-induced increase in mIPSC frequency was significantly inhibited by either HC030031, a selective TRPA1 antagonist, or ruthenium red, a non-selective transient receptor potential channel blocker. Icilin failed to increase glycinergic mIPSC frequency in the absence of extracellular Ca(2+), suggesting that the icilin-induced increase in mIPSC frequency is mediated by the Ca(2+) influx from the extracellular space. In contrast, icilin still increased mIPSC frequency either in the Na(+) -free external solution or in the presence of Cd(2+), a general voltage-dependent Ca(2+) channel blocker. The present results suggest that icilin acts on pre-synaptic TRPA1-like ion channels, which are permeable to Ca(2+), to enhance glycinergic transmission onto medullary dorsal horn neurons. The TRPA1-like channel-mediated enhancement of glycinergic transmission in medullary dorsal horn neurons would contribute to the regulation of pain information from the peripheral tissues. 相似文献
2.
Postsynaptic currents and action potentials recorded from neurons in a mixed culture of rat dorsal root ganglion and spinal cord cells are described. The existence of mutual synaptic connections between the above two types of neurons is demonstrated. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 358–360, July–August, 2006. 相似文献
3.
Shinsuke Katoh Setsuji Hisano Hitoshi Kawano Yasuaki Kagotani Prof. Dr. Shigeo Daikoku 《Cell and tissue research》1988,253(2):297-303
Summary The topographical localization of substance P (SP) and methionine-enkephalin-octapeptide (Enk-8) was examined immunohistochemically in the surface layer of the dorsal horn of rat cervical spinal cord. Although a few neurons were immunoreactive for Enk-8 in the intact animals, after an intracisternal administration of colchicine, immunoreactive Enk-8 neurons were numerous, and half of them indicated immunoreactivity also for SP. Some immunoreactive SP neurons appeared to show no immunoreactivity for Enk-8. Immuno-reactive nerve fibers, on the other hand, were numerous, and many of them contained both peptides. Electron-microscopic examination of the nerve fibers in tissue prepared by a freeze-drying procedure and stained by a postembedding procedure, revealed the costoring of both peptides in the same cored vesicles. The physiological significance of this costoring is discussed. 相似文献
4.
Synaptic contact between dynorphin A(1–8)-like immunoreactive lamina V spinal neurons and calcitonin gene-related peptide-like immunoreactive axon terminals was demonstrated using the immuno-electron microscopic mirror technique in a rat model of peripheral inflammation and hyperalgesia. Adjacent tissue sections were immunocytochemically labeled for either dynorphin A(1–8) or calcitonin gene-related peptide and examined at the electron microscopic level for the presence of synaptic contacts. The results suggest that some opioid neurons which exhibit a dynamic increase in dynorphin peptide associated with peripheral inflammation and hyperalgesia receive direct monosynaptic input from presumptive nociceptive primary afferents. 相似文献
5.
We have investigated and further characterized, in the rabbit retina, the synaptic connectivity of the ON-type cone bipolar cells that are immunoreactive for an antibody against the neurokinin-1 receptor (NK1R). NK1R-immunoreactive bipolar cell axons terminate in stratum 4 of the inner plexiform layer. The axons of NK1R-positive bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and from putative AII amacrine cells via gap junctions. The major outputs from NK1R-positive bipolar cells make contacts with amacrine cell processes. The most frequent postsynaptic dyads comprise two amacrine cell processes. Double-labeling experiments with antibodies against NK1R and either calretinin or glycine have demonstrated that NK1R-immunoreactive bipolar cells form gap junctions with AII amacrine cells. Thus, NK1R-positive cone bipolar cells, together with calbindin-positive cone bipolar cells, may play an important role in transferring rod signals to the ON-type ganglion cells of the cone pathway in the rabbit retina.I.-B. Kim and M.R. Park contributed equally to this work.This work was supported by the Ministry of Science and Technology of Korea (grant no. M1-0108-00-0059; Neurobiology Support Grant). 相似文献
6.
7.
为阐明脊髓背角神经元痛放电的年龄相关的动力学变化,本研究采用非线性预报方法,对两组不同年龄大鼠(成年青龄鼠3~4月龄,老年鼠>22月龄)组织损伤诱发的脊髓背角神经元痛放电峰峰间期序列进行了确定性行为的定量分析.结果显示,皮下注入蜜蜂毒,在两组大鼠均诱发脊髓背角广动力域神经元长时程放电,而老龄大鼠的痛放电峰峰间期序列表现出更高的可确定性.本研究表明,单个神经元的痛放电动力学在整个生命过程中并不是恒定不变的,伤害性神经元活动的年龄相关动力学变化可能是老年人群中多样化痛反应的内在机制之一. 相似文献
8.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord. 相似文献
9.
10.
《Channels (Austin, Tex.)》2013,7(2):124-132
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40–48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40–48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals. 相似文献
11.
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40-48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40-48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals. 相似文献
12.
Asymmetric cross-inhibition between GABAA and glycine receptors in rat spinal dorsal horn neurons 总被引:5,自引:0,他引:5
Presynaptic nerve terminals of inhibitory synapses in the dorsal horn of the spinal cord and brain stem can release both GABA and glycine, leading to coactivation of postsynaptic GABAA and glycine receptors. In the present study we have analyzed functional interactions between GABAA and glycine receptors in acutely dissociated neurons from rat sacral dorsal commissural nucleus. Although the application of GABA and glycine activates pharmacologically distinct receptors, the current induced by a simultaneous application of these two transmitters was less than the sum of currents induced by applying two transmitters separately. Sequential application of glycine and GABA revealed that the GABA-evoked current is more affected by glycine than glycine-evoked responses by GABA. Activation of glycine receptors decreased the amplitude and accelerated the rate of desensitization of GABA-induced currents. This asymmetric cross-inhibition is reversible, dependent on the agonist concentration applied, but independent of both membrane potential and intracellular calcium concentration or changes in the chloride equilibrium potential. During sequential applications, the asymmetric cross-inhibition was prevented by selective GABAA or glycine receptor antagonists, suggesting that occupation of binding sites did not suffice to induce glycine and GABAA receptors functional interaction, and receptor channel activation is required. Furthermore, inhibition of phosphatase 2B, but not phosphatase 1 or 2A, prevented GABAA receptor inhibition by glycine receptor activation, whereas inhibition of phosphorylation pathways rendered cross-talk irreversible. Taken together, our results demonstrated that there is an asymmetric cross-inhibition between glycine and GABAA receptors and that a selective modulation of the state of phosphorylation of GABAA receptor and/or mediator proteins underlies the asymmetry in the cross-inhibition. 相似文献
13.
Endomorphin (Endo) 1 and 2, two tetrapeptides isolated from the bovine and human brain, have been proposed to be the endogenous ligand for the mu-opiate receptor. A multi-disciplinary study was undertaken to address the issues of localization, release and biological action of Endo with respect to the rat dorsal horn. First, immunohistochemical studies showed that Endo-1- or Endo-2-like immunoreactivity (Endo-1- or Endo-2-LI) is selectively expressed in fiber-like elements occupying the superficial layers of the rat dorsal horn, which also exhibit a high level of mu-opiate receptor immunoreactivity. Second, release of immunoreactive Endo-2-like substances (irEndo) from the in vitro rat spinal cords upon electrical stimulation of dorsal root afferent fibers was detected by the immobilized antibody microprobe technique. The site of release corresponded to laminae I and II where the highest density of Endo-2-LI fibers was localized. Lastly, whole-cell patch clamp recordings from substantia gelatinosa (SG) neurons of rat lumbar spinal cord slices revealed two distinct actions of exogenous Endo-1 and Endo-2: (1) depression of excitatory and/or inhibitory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (2) hyperpolarization of SG neurons. These two effects were prevented by the selective mu-opiate receptor antagonist beta-funaltrexamine. The localization of endomorphin-positive fibers in superficial layers of the dorsal horn and the release of irEndo upon stimulation of dorsal root afferents together with the observation that Endo inhibits the activity of SG neurons by interacting with mu-opiate receptors provide additional support of a role of Endo as the endogenous ligand for the mu-opiate receptor in the rat dorsal horn. 相似文献
14.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-LI) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the anirnals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine. 相似文献
15.
大鼠脊髓背角神经元中酸敏感离子通道的特性和功能研究 总被引:1,自引:0,他引:1
酸敏感离子通道(ASICs)是一类能被细胞外酸所激活的配体门控离子通道。本文综合报道大鼠脊髓背角神经元中ASICs的亚基组成及其功能性调节:(1)脊髓背角主要表达ASIC1a、ASIC2a和ASIC2b,但不表达ASIC1b和ASIC3;(2)在脊髓背角神经元中酸诱导电流可能由ASIC1a同聚体通道所介导;(3)胞外痛觉信号如实验性缺血和神经肽FMRF可以通过不同的机制增强脊髓背角神经元酸诱导电流;(4)炎症痛可以上调脊髓背角ASICs在转录和蛋白水平的表达。上述各点提示,在生理或病理情况下脊髓背角ASICs对脊髓水平的感觉信息传递特别是痛觉的传导可能发挥着重要作用。 相似文献
16.
Summary Putative aspartergic and glutamatergic sensory neurons in the rat were identified by autoradiography and immunocytochemistry respectively. Approximately 3% of large L4 dorsal root ganglion neurons (diameter 18–52 m) accumulated radiolabelled aspartate, whereas all satellite glia had high affinity for the amino acid. Glutamate-immunofluorescent (Glu-FITC) dorsal root ganglia neurons comprised 38.3% at S1, 35.6% at L2 33.9% at C5 and 28.8% at T6. Numbers of immunoreactive neurons were higher with the more sensitive peroxidase-anti-peroxidase (Glu-PAP) method; and the cell counts totalled 42% (S1), 41.2% (L4), 35% (C5) and 34.6% (T6). The trigeminal ganglion (TG) contained 24% Glu-FITC and 32.3% Glu-PAP positive cells. The majority of glutamate-immunoreactive sensory neurons were small, ranging from 10–35 m with median diameters of 17.5m (C5), 21m (S1), 24.2m (TG) and 28.5 m (L2). It is evident therefore, that a subgroup of class B cells are glutamatergic. Glutamate immunoreactivity in the spinal cord was similar in all segments and was localized in the superficial lamina and substantia gelatinosa of the dorsal horn. Stained interneurons were located among the immunoreactive fibres. The dorsolateral funiculus contained dense plexus of immunoreactive fibres which increased in prominence after intraperitoneal injection of L-glutamate, but penetration of exogenous glutamate into the grey matter was limited. Instead, the meninges and basal layers of the spinal blood vessels were intensely immunoreactive. The studies describe the subtypes of acidic amino acidergic neurons and relates the immunohistochemistry to a functional subclass. 相似文献
17.
18.
Naresh Kumar Pavel S. Cherkas C.Y. Chiang Jonathan O. Dostrovsky Barry J. Sessle Terence J. Coderre 《Neurochemistry international》2012
Our electrophysiological studies have shown that both purinergic and glutamatergic receptors are involved in central sensitization of nociceptive neurons in the medullary dorsal horn (MDH). Here we assessed the effects of intrathecal administration of apyrase (a nucleotide degrading enzyme of endogenous adenosine 5-triphosphate [ATP]), a combination of apyrase and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, an adenosine A1 receptor antagonist), or 2,3-O-2,4,6-trinitrophenyl-adenosine triphosphate (TNP-ATP, a P2X1, P2X3, P2X2/3 receptor antagonist) on the release of glutamate in the rat MDH evoked by application of mustard oil (MO) to the molar tooth pulp. In vivo microdialysis was used to dialyse the MDH every 5 min, and included 3 basal samples, 6 samples after drug treatment and 12 samples following application of MO. Tooth pulp application of MO induced a significant increase in glutamate release in the MDH. Superfusion of apyrase or TNP-ATP alone significantly reduced the MO-induced glutamate release in the MDH, as compared to vehicle. Furthermore, the suppressive effects of apyrase on glutamate release were reduced by combining it with DPCPX. This study demonstrates that application of an inflammatory irritant to the tooth pulp induces glutamate release in the rat MDH in vivo that may be reduced by processes involving endogenous ATP and adenosine. 相似文献
19.
20.
Xie YF Pflueger M Feng S Lin SX Kwan CL Galasko G Sessle BJ Yu XM 《Journal of neurochemistry》2012,122(3):605-618
Neurons located in the trigeminal subnucleus caudalis (Vc) play crucial roles in pain and sensorimotor functions in the orofacial region. Because of many anatomical and functional similarities with the spinal dorsal horn (SDH), Vc has been termed the medullary dorsal horn--analogous to the SDH. Here, we report that when compared with embryonic SDH neurons in culture, neurons isolated from the Vc region showed significantly slower growth, lower glutamate receptor activity, and more cells undergoing cell death. SDH neuron development was inhibited in co-cultures of SDH and Vc tissues while Vc neuron development was promoted by co-culture with SDH tissues. Furthermore, we identified that small (non-protein) ninhydrin-reacting molecules purified from either embryonic or post-natal Vc-conditioned medium inhibited neuronal growth whereas ninhydrin-reacting molecules from SDH-conditioned medium promoted neuronal growth. These findings suggest the involvement of locally released factors in the region-specific regulation of neuronal development in Vc and SDH, central nervous system regions playing critical roles in pain, and point to novel avenues for investigating central nervous system regionalization and for designing therapeutic approaches to manage neurodegenerative diseases and pain. 相似文献