首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Largely triggered by the Bali debate, conservation literature over the last decade has seen increasing realization of man's responsibility in ensuring survival of the world's protected areas. In African terms, there has been an overwhelming number of pilot projects which have the people label. Whereas this trend has been ecouraging, the overall conservation picture has not been very bright as the wildlife resources have continued to dwindle under surmounting human pressure. The problem does not seem to be awareness of the necessity for protected areas any more but rather whether it is feasible under the present prevailing circumstances.  相似文献   

3.
This study evaluated the extent to which natural protected areas (NPAs) in Mexico have been effective for preventing land use/land cover change, considered as a major cause of other degradation processes. We developed an effectiveness index including NPA percentage of transformed areas (agriculture, induced vegetation, forestry plantations, and human settlements) in 2002, the rate and absolute extent of change in these areas (1993–2002), the comparison between rates of change observed inside the NPA and in an equivalent surrounding area, and between the NPA and the state(s) in which it is located. We chose 69 terrestrial federal NPAs, decreed before 1997, that were larger than 1,000 ha, not urban/reforested with non-native vegetation, not islands and not coastal strips, and estimated the extent of transformed areas using 1993 and 2002 land use/land cover maps. Over 54% of NPAs were effective, and were heterogeneously distributed by management categories: 65% of Biosphere Reserves, 53% of Flora and Fauna Protection Areas, and 45% of National Parks. 23% of NPAs were regarded as weakly effective, and the remaining 23% as non-effective. We recognize the importance of NPAs as a relevant conservation instrument, as half of NPAs analyzed (particularly biosphere reserves) prevented natural vegetation loss compared with their geographic context. Our results suggest that conservation based on NPAs in Mexico still faces significant challenges. Our approach can be expanded for evaluating the effectiveness of NPA in other regions, as land use/land cover maps are now available almost worldwide.  相似文献   

4.
There is growing evidence that tree turnover in tropical forests has increased over the last decades in permanent sample plots. This phenomenon is generally attributed to the increase in atmospheric CO2, but other causes cannot be ruled out. A proper evaluation of historical shifts in tree turnover requires data over longer periods than used so far. Here, we propose two methods to use tree-ring data for detecting long-term changes in tree turnover. We apply these methods to two non-pioneer tree species in a Bolivian moist forest. First, we checked for temporal changes in the frequency of growth releases to determine whether this frequency has increased over time. Second, we calculated the degree of temporal autocorrelation—a measure that indicates temporal changes in growth rates that are likely related to canopy dynamics—and checked for changes in this parameter over time. In addition, we performed analyses that corrected for ontogenetic increases in the measures used by analyzing residuals from size–growth relations. No evidence for the occurrence of a large-scale disturbance was found as we did not observe synchronization in the occurrence of releases in time. For both species, we did not detect changes in autocorrelation or release frequency over the last 200–300 years. Only in one size category, we found increased release frequency over time, probably as a result of a remaining ontogenetic effect. In all, our analyses do not provide evidence for long-term changes in tree turnover in the study area. We discuss the suitability of the proposed methods.  相似文献   

5.
The unbroken primary rain forest currently covering the interior ofFrench Guiana still offers a unique opportunity to establish a network of largeprotected areas. Bird species richness was surveyed within 20 study areasspreadover the country to assess the relative abundance and frequency of occurrenceofforest interior and natural gap taxa (391 species, excluding raptors andnon-resident birds). Richness, rarity, restricted range, hot spot andconservation value algorithms were used to rank sites in decreasing orders ofimportance and draw sets of survey sites likely to maximize bird diversity. Inmost sets from different methodological approaches, the southern regionconsistently emerged as a priority area for conservation, with the centralmountain range contributing some specialized taxa and the northern regionincorporating additional species, mostly from marginal habitats and moretypicalof the nearby coastal zone. Estimates of areas likely to preserve an almostcomplete sample of the regional biodiversity amounted to about 1–2millionhectares, either in one large area (national park) or divided into 2–3reserves overlapping regional hot spots. However, representation of all speciesand habitats in a protected area system is not an assurance of long-termviability when minimum viable population sizes and demographic patterns arelittle known, and when the risks and impacts of persistent human disturbancessuch as mining, logging and hunting are growing.  相似文献   

6.
7.
Imminent shifts in environmental parameters due to climatic change might have profound ramifications for wetlands listed under the Ramsar convention. Although the exact mechanisms by which global change will affect these systems are not known, models that simulate component drivers, particularly at a broad spatial scale, can nevertheless allow for more informed conservation decision making. Such general inference is particularly needed for wetlands across the tropics, where less knowledge and fewer resources are available to mitigate the impacts on important conservation sites. Here we develop a case study of wetland loss to sea level rise across tropical north Australia (including Ramsar‐listed sites), and link these to a metapopulation model for a keystone endemic waterbird, the magpie goose Anseranas semipalmata. We projected published models on sea level rise through to the year 2400, and found a non‐linear trajectory of inundation up to 20 m above present levels. Digital elevation models were used to simulate sea level rise and the spatially differentiated loss of wetland habitat used by geese. Range retraction was linked to decline in ecological carrying capacity, and we coupled wetland‐specific habitat loss projections to a spatially explicit demographic metapopulation model. Additionally, we included alternate harvest strategies based on present‐day estimates of indigenous and non‐indigenous offtake of geese, and examined the synergy between wetland loss and hunting on extinction risk. Our results suggest that Australia's once‐abundant and widespread magpie goose will be reduced to a fragmented population of just a few thousand individuals within the next 200–300 yr. Harvest could continue for some time, up to a “tipping point” at around 5% loss of current wetland habitat, after which the decline of geese is rapid. Given the inexorable nature of sea level rise, short‐ to medium‐term conservation of waterbirds across Ramsar wetlands must prepare for adaptive wetland management, such as through buffer‐placement, and ongoing monitoring of harvest.  相似文献   

8.
Abstract Identification of biodiversity hotspots is essential to conservation strategies aimed at minimizing the possibility of losing half of the world's species in the next 50 years. The aims of the present study were: (i) to locate and designate zones of endemism in the temperate forest of South America; and (ii) to compare the distribution of these areas with the distribution of existing protected areas in this habitat type. Endemism areas were determined by using parsimonious analysis of endemism, which identified zones of endemism on the basis of sets of endemic species that were restricted to two or more study areas. We used distribution information for five unrelated taxa (ferns, trees, reptiles, birds and mammals) to provide more reliable results and patterns than would work with only a single taxon or related taxa. The northern part of this region has high endemism for all of the taxa considered in this study. We demonstrate that although the temperate forest of South America has more than 30% of its area under some type of protection, correlation between protected areas and the areas of endemism is remarkably low. In fact, less than 10% of protected areas are situated in areas that have the greatest value for conservation (i.e. high endemism). Under the current strategy, biodiversity within South America's temperate forest is in danger despite the large amount of protected area for this forest type.  相似文献   

9.
10.
In situ conservation is an effective strategy to protect biodiversity, and Brazil has one of the largest protected area (PA) systems in the world. However, the distribution of Brazilian PAs is uneven and the Caatinga drylands are poorly protected. As financial resources are essential for effectively managing PAs, we analyzed the Brazilian Government's budget allocated to 20 federal PAs in the Caatinga between 2008 and 2014, which ranged from 231,575 USD in 2008 to 13.5 Mi USD in 2011. Neither expenses, nor the availability of funds, were homogeneous among PAs or throughout the years. Land acquisition in a single PA consumed ~75% of the budget, and the two smallest PAs received proportionally the most money. Excluding land acquisition, the 20 PAs received 0.50 USD/ha/year. Funds were allocated not to biodiversity conservation per se but mainly to securing offices, cars, and equipment. From 2012 onwards, the PA budget was reduced. Even including salaries, the budget allocated for these PAs is ~13 times lower than what the Ministry of the Environment declared necessary for the basic operation of protected areas in Brazil, 1.5 times lower than values spent worldwide, up to 5 times lower than spent in Latin American and African parks, and up to 72 times lower than spent in the European Union, exposing one cause of the precarious situation of the Caatinga PAs.  相似文献   

11.
Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.  相似文献   

12.
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.  相似文献   

13.
14.
Contiguity of protected areas (PAs) is a critical factor to promote well being of the native flora, fauna and life support system to humans. Such contiguity cannot be guaranteed without providing a path or ‘a corridor’ through forested landscapes that includes natural land cover and undisturbed patches. Incidentally, the Himalayan foothills have greater pressure on these landscapes due to high human dependence for livelihood. This pressure is expected to increase in the coming years altering the potential corridors between PAs. The PA managers need flexible processing, modeling and decision tools to propose a range of acceptable corridors between the PAs and ensure their sustainable health. Such flexible tools can be utilized in future to modify for taking decision to conserve the patches connecting patches and adapt as per changing landscapes. This article describes utility of geospatial modeling tools to assess the status of corridors in light of changing landscapes between Rajaji and Jim Corbett National Park, the two most important PAs in the Himalayan foothills. The work has been carried out in four stages, first—using satellite data land use land cover (LULC) maps were prepared for year 1990, 2000 and 2005, second—Land Change Modeler (LCM) was used for LULC change analysis, third—Multi Layer Perceptron Neural Network (MLPNN) was used to predict the status of LULC for 2015 and 2020, and fourth—using temporal morphology of the areas behaving both as barrier and easiness, friction surface cost was calculated to identify least cost pathways (LCPs)/migratory corridors between the PAs. The LULC maps for 1990, 2000 and 2005 were evaluated using accuracy assessment (80%) and Khat statistics (>0.79). The change prediction model was validated by comparing actual LULC of 2005 with predicted LULC of 2005 and the agreement was 71%. The LCP has shifted with the predicted change in the classes. The corridor has shifted by 0.5–3 km towards the south and has come closer to the agriculture fields and river channels.  相似文献   

15.
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.  相似文献   

16.
Termites are frequently dominant invertebrate decomposers and bioturbators in lowland tropical forests and therefore strongly influence ecosystem processes favouring soil stability, porosity and nutrient retention. In this study, we provide the first spatially replicated dataset on termite assemblage composition, abundance and biomass in a Peruvian rainforest by sampling six separate plots. In addition, two alternative sampling methods (transect method-TM and quadrat method-QM), providing termite species density data, were compared among the plots. The relationships between a range of environmental and spatial variables and species composition were examined using canonical correspondence analysis variation partitioning. We found that the TM captured a higher proportion of the known species in the site (82 %) compared with the QM (66 %). In addition, 56 % of the species sampled by TM were common between the plots while only 18 % of species overlapped using the QM. The QM may therefore potentially have undersampled the species pool. Environmental variables were shown to explain a larger proportion of the species patterns than the spatial variables with elevation, soil temperature and distance to the river being the most important. We discuss the impacts of the environmental and spatial variables on termite species composition.  相似文献   

17.
Use of habitat is a critical component related to structure of small-mammal communities, with partitioning occurring primarily along dimensions of microhabitat, although use of microhabitat often does not explain fully use at a macrohabitat level. Through grid studies of small mammals in coastal Colima, Mexico (during January 2003–2005), we appraised influence of available habitat, species richness, abundance, and cumulative abundance of other small mammals on variation in habitat used by species. We evaluated 14 habitat variables (reflecting ground cover, slope, canopy, and vegetation density on vertical and horizontal axes) and developed a composite variable (principal component 1) reflecting general openness of habitat through which we addressed habitat use. For the four most common mammalian species (Sigmodon mascotensis, Heteromys pictus, Baiomys musculus, and Oryzomys couesi), two measures of variation in habitat used were employed to estimate niche breadth, one of which assessed variation in habitat use relative to variation present on a grid. Sigmodon mascotensis and B. musculus preferred areas that were more open, and H. pictus and O. couesi occupied less-open areas; breadth of habitat use did not differ interspecifically. Habitat use was more variable on grids with more variability in habitat, although not greater than chance expectations. Findings do not lend support to the resource-breadth hypothesis as an explanation for population densities of species at a local level or the habitat-heterogeneity hypothesis as a predictor of species richness. Variation in habitat used by S. mascotensis did not proportionally increase when diverse habitat was available but was greater when the species was more abundant. For H. pictus, when cumulative abundance of other small mammals was greater, breadth of habitat used was greater. Intraspecific density-dependent habitat selection may result in S. mascotensis selecting a greater variety of habitats, while greater interspecific abundance is related to a greater range in use of habitats by H. pictus. Baiomys musculus used a higher proportion of habitat relative to that available when more species were present on a grid. Variation in habitat used by O. couesi was unrelated to any factor examined. Overall, the four species responded in notably different ways with respect to availability of habitat, abundance, and presence of other species.  相似文献   

18.
热带森林乔木种群分布格局及其研究方法的比较   总被引:42,自引:5,他引:42  
应用样地个体数为基础的方差/均值比率、Morisita分散指标,以及以个体距离为基础的最近邻体法、复合个体距离分析法对海南岛吊罗山山地雨林8个主要种群分布格局进行了比较研究.结果表明,8个种群为聚集或随机分布,4种测定方法中以复合个体距离分析法较好.  相似文献   

19.
There are still substantial questions about whether protected areas affect the quality and biodiversity of surface waters within their borders. In this study, the size and land use of 19 protected areas of Latium Region (central Italy) were related to the biological quality of 32 streams running inside them. Additionally, the biological quality of 18 out of the 32 streams was compared with the quality recorded on the same streams outside the boundaries of the protected areas. The biological quality was assessed using the Extended Biotic Index, which indicates the macroinvertebrate community health. The quality of 32 study streams running through the protected areas was not related to the size of these areas, but it did reflect land use. On average, the 18 study sites inside protected areas had biological quality similar to external control sites. In the protected areas, the biological quality of streams was higher than for the same streams in the surrounding territory provided that anthropogenic changes were fewer. These data indicate that the creation of protected areas per se does not increase freshwater biodiversity and that land use has a major impact on the biological quality of the stream in a protected area. As a consequence, a higher number of reserves or landscape designations specifically created for aquatic conservation is necessary and recovery programs aimed at restoring physical habitats and reducing sources of impact to aquatic life have to be pursued. Also, where the anthropogenic impact is high (e.g., as in the case of strongly urbanised areas), the creation of effective protected areas might improve the biological quality of water courses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号