首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine.

Methodology/Principal Findings

Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM) and 43 gender-matched healthy controls (HC) by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients'' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks.

Conclusions

Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.  相似文献   

2.
In the past few years, several studies have been directed to understanding the complexity of functional interactions between different brain regions during various human behaviors. Among these, neuroimaging research installed the notion that speech and language require an orchestration of brain regions for comprehension, planning, and integration of a heard sound with a spoken word. However, these studies have been largely limited to mapping the neural correlates of separate speech elements and examining distinct cortical or subcortical circuits involved in different aspects of speech control. As a result, the complexity of the brain network machinery controlling speech and language remained largely unknown. Using graph theoretical analysis of functional MRI (fMRI) data in healthy subjects, we quantified the large-scale speech network topology by constructing functional brain networks of increasing hierarchy from the resting state to motor output of meaningless syllables to complex production of real-life speech as well as compared to non-speech-related sequential finger tapping and pure tone discrimination networks. We identified a segregated network of highly connected local neural communities (hubs) in the primary sensorimotor and parietal regions, which formed a commonly shared core hub network across the examined conditions, with the left area 4p playing an important role in speech network organization. These sensorimotor core hubs exhibited features of flexible hubs based on their participation in several functional domains across different networks and ability to adaptively switch long-range functional connectivity depending on task content, resulting in a distinct community structure of each examined network. Specifically, compared to other tasks, speech production was characterized by the formation of six distinct neural communities with specialized recruitment of the prefrontal cortex, insula, putamen, and thalamus, which collectively forged the formation of the functional speech connectome. In addition, the observed capacity of the primary sensorimotor cortex to exhibit operational heterogeneity challenged the established concept of unimodality of this region.  相似文献   

3.
Mapping the structural core of human cerebral cortex   总被引:2,自引:0,他引:2  
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.  相似文献   

4.
Although alterations of topological organization have previously been reported in the brain functional network of Parkinson’s disease (PD) patients, the topological properties of the brain network in early-stage PD patients who received antiparkinson treatment are largely unknown. This study sought to determine the topological characteristics of the large-scale functional network in early-stage PD patients. First, 26early-stage PD patients (Hoehn and Yahr stage:1-2) and 30 age-matched normal controls were scanned using resting-state functional MRI. Subsequently, graph theoretical analysis was employed to investigate the abnormal topological configuration of the brain network in early-stage PD patients. We found that both the PD patient and control groups showed small-world properties in their functional brain networks. However, compared with the controls, the early-stage PD patients exhibited abnormal global properties, characterized by lower global efficiency. Moreover, the modular structure and the hub distribution were markedly altered in early-stage PD patients. Furthermore, PD patients exhibited increased nodal centrality, primarily in the bilateral pallidum, the inferior parietal lobule, and the medial superior frontal gyrus, and decreased nodal centrality in the caudate nucleus, the supplementary motor areas, the precentral gyrus, and the middle frontal gyrus. There were significant negative correlations between the Unified Parkinson Disease Rating Scale motor scores and nodal centralities of superior parietal gyrus. These results suggest that the topological organization of the brain functional network was altered in early-stage PD patients who received antiparkinson treatment, and we speculated that the antiparkinson treatment may affect the efficiency of the brain network to effectively relieve clinical symptoms of PD.  相似文献   

5.
Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.  相似文献   

6.
Yap PT  Fan Y  Chen Y  Gilmore JH  Lin W  Shen D 《PloS one》2011,6(9):e24678
The human brain is organized into a collection of interacting networks with specialized functions to support various cognitive functions. Recent research has reached a consensus that the brain manifests small-world topology, which implicates both global and local efficiency at minimal wiring costs, and also modular organization, which indicates functional segregation and specialization. However, the important questions of how and when the small-world topology and modular organization come into existence remain largely unanswered. Taking a graph theoretic approach, we attempt to shed light on this matter by an in vivo study, using diffusion tensor imaging based fiber tractography, on 39 healthy pediatric subjects with longitudinal data collected at average ages of 2 weeks, 1 year, and 2 years. Our results indicate that the small-world architecture exists at birth with efficiency that increases in later stages of development. In addition, we found that the networks are broad scale in nature, signifying the existence of pivotal connection hubs and resilience of the brain network to random and targeted attacks. We also observed, with development, that the brain network seems to evolve progressively from a local, predominantly proximity based, connectivity pattern to a more distributed, predominantly functional based, connectivity pattern. These observations suggest that the brain in the early years of life has relatively efficient systems that may solve similar information processing problems, but in divergent ways.  相似文献   

7.
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.  相似文献   

8.
Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.  相似文献   

9.
In this study, we aimed to investigate the functional network changes that occur in patients with lower back pain(LBP). We also investigated the link between LBP and the small-world properties of functional networks within the brain. Functional MRI(fMRI) was performed on 20 individuals with LBP and 17 age and gender-matched normal controls during the resting state. The severity of the pain in the individuals with LBP ranged from 5 to 8 on a 0–10 scale, with 0 indicating no pain. Network-based statistics were performed to investigate the differences between the brain networks of individuals with LBP and those of normal controls. Several small-world parameters of brain networks were calculated, including the clustering coefficient, characteristic path length, local efficiency, and global efficiency. These criteria reflect the overall network efficiency. The brain networks in the individuals with LBP due to herniation of a lumbar disc demonstrated a significantly longer characteristic path length as well as a lower clustering coefficient, global efficiency, and local efficiency compared to those in control subjects. We found that LBP patients tended to have unstable and inefficient brain networks when compared with healthy controls. In addition, LBP individuals showed significantly decreased functional connectivity in the anterior cingulate cortex, middle cingulate cortex, post cingulate cortex, inferior frontal gyrus, middle temporal gyrus, occipital gyrus, postcentral gyrus, precentral gyrus, supplementary motor area, thalamus, fusiform, caudate, and cerebellum. We believe that these regions may be involved in the pathophysiology of lower back pain.  相似文献   

10.
阿尔茨海默病(Alzheimer's disease,AD)是以记忆和其他高级认知功能下降为特征的神经退行性疾病.早期的神经影像学研究通常是探索AD患者局部脑区的结构和功能变化.随着多模态神经影像技术和人脑连接组学研究方法的发展,研究者已经能够考察AD患者脑结构和功能连接通路.采用这些方法,最近的研究已经发现,AD患者脑网络的连接强度、网络效率、模块化组织和核心脑区连接的下降,并发现这些变化与患者的记忆评分等密切相关.这些新方法和新技术的出现不仅提供了新颖的观点来解释AD病的脑区失连接病理生理机制,而且发现的AD异常脑连接模式可能作为敏感特征应用于AD早期辅助诊断的影像标记物研究.特别重要的是,研究表明,在AD患者脑神经网络出现的异常连接模式,在AD前期即轻度认知障碍期患者中也已出现,表明了将AD影像学研究的重点前移到AD前期这一可治疗阶段的重要性和迫切性.  相似文献   

11.

Background

The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low–frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases.

Methodology/Principal Findings

In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE), using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length.

Conclusions/Significance

We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.  相似文献   

12.

Background

The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics.

Results

We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques.

Conclusions

Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.  相似文献   

13.
Recently, many researchers have used graph theory to study the aberrant brain structures in Alzheimer's disease (AD) and have made great progress. However, the characteristics of the cortical network in Mild Cognitive Impairment (MCI) are still largely unexplored. In this study, the gray matter volumes obtained from magnetic resonance imaging (MRI) for all brain regions except the cerebellum were parcellated into 90 areas using the automated anatomical labeling (AAL) template to construct cortical networks for 98 normal controls (NCs), 113 MCIs and 91 ADs. The measurements of the network properties were calculated for each of the three groups respectively. We found that all three cortical networks exhibited small-world properties and those strong interhemispheric correlations existed between bilaterally homologous regions. Among the three cortical networks, we found the greatest clustering coefficient and the longest absolute path length in AD, which might indicate that the organization of the cortical network was the least optimal in AD. The small-world measures of the MCI network exhibited intermediate values. This finding is logical given that MCI is considered to be the transitional stage between normal aging and AD. Out of all the between-group differences in the clustering coefficient and absolute path length, only the differences between the AD and normal control groups were statistically significant. Compared with the normal controls, the MCI and AD groups retained their hub regions in the frontal lobe but showed a loss of hub regions in the temporal lobe. In addition, altered interregional correlations were detected in the parahippocampus gyrus, medial temporal lobe, cingulum, fusiform, medial frontal lobe, and orbital frontal gyrus in groups with MCI and AD. Similar to previous studies of functional connectivity, we also revealed increased interregional correlations within the local brain lobes and disrupted long distance interregional correlations in groups with MCI and AD.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease selectively affecting upper and lower motor neurons. Patients with ALS suffer from progressive paralysis and eventually die on average after three years. The underlying neurobiology of upper motor neuron degeneration and its effects on the complex network of the brain are, however, largely unknown. Here, we examined the effects of ALS on the structural brain network topology in 35 patients with ALS and 19 healthy controls. Using diffusion tensor imaging (DTI), the brain network was reconstructed for each individual participant. The connectivity of this reconstructed brain network was compared between patients and controls using complexity theory without - a priori selected - regions of interest. Patients with ALS showed an impaired sub-network of regions with reduced white matter connectivity (p = 0.0108, permutation testing). This impaired sub-network was strongly centered around primary motor regions (bilateral precentral gyrus and right paracentral lobule), including secondary motor regions (bilateral caudal middle frontal gyrus and pallidum) as well as high-order hub regions (right posterior cingulate and precuneus). In addition, we found a significant reduction in overall efficiency (p = 0.0095) and clustering (p = 0.0415). From our findings, we conclude that upper motor neuron degeneration in ALS affects both primary motor connections as well as secondary motor connections, together composing an impaired sub-network. The degenerative process in ALS was found to be widespread, but interlinked and targeted to the motor connectome.  相似文献   

15.
As patients with Parkinson’s disease (PD) are at high risk for comorbid depression, it is hypothesized that these two diseases are sharing common pathogenic pathways. Using regional homogeneity (ReHo) and functional connectivity approaches, we characterized human regional brain activity at resting state to examine specific brain networks in patients with PD and those with PD and depression (PDD). This study comprised 41 PD human patients and 25 normal human subjects. The patients completed the Hamilton Depression Rating Scale and were further divided into two groups: patients with depressive symptoms and non-depressed PD patients (nD-PD). Compared with the non-depressed patients, those with depressive symptoms exhibited significantly increased regional activity in the left middle frontal gyrus and right inferior frontal gyrus, and decreased ReHo in the left amygdala and bilateral lingual gyrus. Brain network connectivity analysis revealed decreased functional connectivity within the prefrontal-limbic system and increased functional connectivity in the prefrontal cortex and lingual gyrus in PDD compared with the nD-PD group. In summary, the findings showed regional brain activity alterations and disruption of the mood regulation network in PDD patients. The pathogenesis of PDD may be attributed to abnormal neural activity in multiple brain regions.  相似文献   

16.
Resting-state functional connectivity (RSFC) offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language – Chinese – by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.  相似文献   

17.
Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate network properties. To this end, we constructed brain functional networks based on 27 subjects’ fMRI data that was collected while performing explicit and implicit language tasks. We found that network properties and network hubs corresponding to the implicit language task were similar to those associated with the explicit language task. We also found common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may modulate the properties of brain functional networks.  相似文献   

18.
Graph-theoretical analysis of brain connectivity data has revealed significant features of brain network organization across a range of species. Consistently, large-scale anatomical networks exhibit highly nonrandom attributes including an efficient small world modular architecture, with distinct network communities that are interlinked by hub regions. The functional importance of hubs motivates a closer examination of their mutual interconnections, specifically to examine the hypothesis that hub regions are more densely linked than expected based on their degree alone, i.e. forming a central rich club. Extending recent findings of rich club topology in the cat and human brain, this report presents evidence for the existence of rich club organization in the cerebral cortex of a non-human primate, the macaque monkey, based on a connectivity data set representing a collation of numerous tract tracing studies. Rich club regions comprise portions of prefrontal, parietal, temporal and insular cortex and are widely distributed across network communities. An analysis of network motifs reveals that rich club regions tend to form star-like configurations, indicative of their central embedding within sets of nodes. In addition, rich club nodes and edges participate in a large number of short paths across the network, and thus contribute disproportionately to global communication. As rich club regions tend to attract and disperse communication paths, many of the paths follow a characteristic pattern of first increasing and then decreasing node degree. Finally, the existence of non-reciprocal projections imposes a net directional flow of paths into and out of the rich club, with some regions preferentially attracting and others dispersing signals. Overall, the demonstration of rich club organization in a non-human primate contributes to our understanding of the network principles underlying neural connectivity in the mammalian brain, and further supports the hypothesis that rich club regions and connections have a central role in global brain communication.  相似文献   

19.
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.  相似文献   

20.
An important component of creativity is divergent thinking, which involves the ability to generate novel and useful problem solutions. In this study, we tested the relation between resting-state functional connectivity of brain areas activated during a divergent thinking task (i.e., supramarginal gyrus, middle temporal gyrus, medial frontal gyrus) and the effect of practice in 32 adolescents aged 15–16. Over a period of two weeks, an experimental group (n = 16) conducted an 8-session Alternative Uses Task (AUT) training and an active control group (n = 16) conducted an 8-session rule switching training. Resting-state functional connectivity was measured before (pre-test) and after (post-test) training. Across groups at pre-test, stronger connectivity between the middle temporal gyrus and bilateral postcentral gyrus was associated with better divergent thinking performance. The AUT-training, however, did not significantly change functional connectivity. Post hoc analyses showed that change in divergent thinking performance over time was predicted by connectivity between left supramarginal gyrus and right occipital cortex. These results provide evidence for a relation between divergent thinking and resting-state functional connectivity in a task-positive network, taking an important step towards understanding creative cognition and functional brain connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号