首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins.  相似文献   

2.
The ability of Pseudomonas putida to synthesize polyhydroxyalkanoate (PHA) from 36 different carboxylic acids containing various functional groups was examined. This bacterium did not utilize short carboxylic acids (C(4)-C(6)) containing bromine, methoxy, ethoxy, cyclohexyl, phenoxy, and olefin groups as the sole carbon substrate. No polymer was isolated from the cells grown with carboxylic acids bearing hydroxyl, amino, para-methoxyphenoxy, and para-ethoxyphenoxy groups regardless of the carbon substrate chain lengths used even when they were cofed with nonanoic acid. Of all the carbon substrates evaluated, only 6-para-methylphenoxyhexanoic acid, 8-para-methylphenoxyoctanoic acid, 8-meta-methylphenoxyoctanoic acid, 10-undecenoic acid, and 10-undecynoic acid supported both growth and the production of PHA containing the corresponding functional groups by P. putida. The present results indicate that the carbon availability of P. putida for growth and PHA production is significantly different from that of P. oleovorans.  相似文献   

3.
An efficient method to prepare enantiomerically pure (R)-3-hydroxycarboxylic acids from bacterial polyhydroxyalkanoates (PHAs) accumulated by Pseudomonas putida GPo1 is reported in this study. (R)-3-Hydroxycarboxylic acids from whole cells were obtained when conditions were provided to promote in vivo depolymerization of intracellular PHA. The monomers were secreted into the extracellular environment. They were separated and purified by acidic precipitation, preparative reversed-phase column chromatography, and subsequent solvent extraction. Eight (R)-3-hydroxycarboxylic acids were isolated: (R)-3-hydroxyoctanoic acid, (R)-3-hydroxyhexanoic acid, (R)-3-hydroxy-10-undecenoic acid, (R)-3-hydroxy-8-nonenoic acid, (R)-3-hydroxy-6-heptenoic acid, (R)-3-hydroxyundecanoic acid, (R)-3-hydroxynonanoic acid, and (R)-3-hydroxyheptanoic acid. The overall yield based on released monomers was around 78 wt % for (R)-3-hydroxyoctanoic acid. All obtained monomers had a purity of over 95 wt %. The physical properties of the purified monomers and their antimicrobial activities were also investigated.  相似文献   

4.
The production of rhamnolipid biosurfactants by P. aeruginosa UG2 was examined under different culture conditions. Rhamnolipid yield was affected by the nature of the carbon sources, the nutrient concentrations, pH, and age of the culture. Hydrophobic substrates like corn oil, lard (rich in unsaturated and saturated fat), and long chain alcohols maximized biosurfactant production (100-165 mg/g substrate). Hydrophilic substrates like glucose, and succinic acid delivered poor yields (12-36 mg/g substrate). Rhamnolipid production was greater when N as (NH4)(2)SO4 and trace metals were added in several periodic doses rather than at the beginning of the process. Increased biosurfactant production was seen in cultures maintained at neutral pH relative to cultures allowed to develop acidic conditions (pH = 6.25). Although the level of rhamnolipid production was affected by culture conditions, the distribution of rhamnolipid subspecies did not vary between cultures. A dirhamnolipid species containing two 10 carbon alpha-hydroxy fatty acids [Rh2C10C10] was the most abundant in the mixtures (60.6 mol%), while the levels of the monorhamnolipid [RhC10C10] (20.7 mol%) and two dirhamnolipids [Rh2C10C12 and its dehydro variant Rh2C10C12-H2] (18.7 mol%) were similar. Biosurfactant mixtures produced with corn oil as sole carbon source solubilized the herbicide trifluralin [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzamine] to a greater extent. This suggests that the presence of incompletely metabolized hydrophobic by-products acting as co-solvents can increase the solubilization capacity of biosurfactant mixtures.  相似文献   

5.
Pseudomonas oleovorans ATCC 29347 was grown in chemostat culture at different dilution rates with mineral media varying in their ratios of octanoate to ammonia (C(0)/N(0) ratio). At all dilution rates tested, three distinct growth regimes were observed: (i) carbon limitation with NH(4)(+) in excess at low C(0)/N(0) ratios, (ii) purely nitrogen-limited growth conditions at high C(0)/N(0) ratios with residual octanoate in the culture supernatant, and (iii) an intermediate zone of dual-nutrient-limited growth conditions where both the concentration of octanoate and that of ammonia were very low. The dual-nutrient-limited growth zone shifted to higher C(0)/N(0) ratios with decreasing dilution rates, and the extension of the dual-nutrient-limited growth zone was inversely proportional to the growth rate. The cells accumulated the storage compound medium-chain-length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) during dual (C and N)-nutrient-limited and N-limited growth conditions. Within the dual-nutrient-limited growth zone, the cellular mcl-PHA contents increased when the C(0)/N(0) ratio in the feed was increased, whereas the cellular mcl-PHA level was independent from the feed C(0)/N(0) ratio during N-limited growth. The monomeric composition of the accumulated mcl-PHA was independent of both the dilution rate and the feed C(0)/N(0) ratio and consisted of 12 mol% 3-hydroxyhexanoic acid and 88 mol% 3-hydroxyoctanoic acid. Accumulation of mcl-PHA led to an increase in the cellular C/N ratio and to changes in elemental growth yields for nitrogen and carbon.  相似文献   

6.
Pseudomonas putida KT2442 is able to accumulate medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) as intracellular inclusions on a variety of fatty acids and many other carbon sources. Some of these substrates, such as octanoic acid, alkenoic acids, and halogenated derivatives, are toxic when present in excess. Efficient production of mcl-PHAs on such toxic substrates therefore requires control of the carbon source concentration in the supernatant. In this study, we develop a closed-loop control system based on on-line gas chromatography to maintain continuously fed substrates at desired levels. We used the graphical programming environment LABVIEW to set up a flexible process control system that allows users to perform supervisory process control and permits remote access to the fermentation system over the Internet. Single-substrate supernatant concentration in a high-cell-density fed-batch fermentation process was controlled by a proportional (P) controller (P = 50%) acting on the substrate pump feed rate. Na-octanoate concentrations oscillated around the setpoint of 10 mM and could be maintained between 0 and 25 mM at substrate uptake rates as high as 90 mmol L(-1) h(-1). Under cofeeding conditions Na-10-undecenoate and Na-octanoate could be individually controlled at 2.5 mM and 9 mM, respectively, by applying a proportional integral (PI) controller for each substrate. The resulting copolymer contained 43.5 mol% unsaturated monomers and reflected the ratio of 10-undecenoate in the feed. It was suggested that both substrates were consumed at similar rates. These results show that this control system is suitable for avoiding substrate toxicity and supplying carbon substrates for growth and mcl-PHA accumulation.  相似文献   

7.
Polyhydroxyalkanoates (PHA) are polyesters of various hydroxyalkanoates accumulated in numerous bacteria. All of the monomeric units of PHA are enantiomerically pure and in R-configuration. R-Hydroxyalkanoic acids can be widely used as chiral starting materials in fine chemical, pharmaceutical and medical industries. In this study, we established an efficient method for the production of chiral hydroxyalkanoic acid monomers from PHA. Pseudomonas putida cells containing PHA were resuspended in phosphate buffer at different pH. We observed that the optimal initial pH for intracellular PHA degradation and monomer release was at pH 8-11 with pH 11 as the best. At initial pH 11, PHA containing 3-hydroxyoctanoic acid and 3-hydroxyhexanoic acid was degraded with an efficiency of over 90% (w/w) in 9 h, and the yield of the corresponding monomers was also over 90%. Under the same conditions, unsaturated monomers were also effectively produced from PHA containing 3-hydroxy-6-heptenoic acid, 3-hydroxy-8-nonenoic acid, and 3-hydroxy-10-undecenoic acid. The monomers (e.g., 3-hydroxyoctanoic acid) were further isolated using solid phase extraction and purified on reversed phase semipreparative liquid chromatography. We confirmed that the purified 3-hydroxyoctanoic acid monomer has exclusively the R-configuration.  相似文献   

8.
Pseudomonas putida CA-3 has the ability to accumulate to high levels unique polyhydroxyalkanoate (PHA) heteropolymers composed of aromatic and aliphatic monomers. The majority of monomers are aromatic making up 98% of the polymer. (R)-3-hydroxyphenylvalerate and (R)-3-hydroxyphenylhexanoate are the most abundant monomers found in polymers accumulated from phenylalkanoic acids with an uneven and even number of carbons on the acyl side chain respectively. PHAs accumulated from phenylvaleric and phenylhexanoic acid were partially crystalline while all other PHAs were amorphous. Significant differences in the yield and PHA content of the cells occurred when different phenylalkanoic acids were supplied as growth substrates. Increasing the initial concentration of the growth substrate increased both the PHA content of the cells and the overall yield (g PHA/g carbon supplied) of PHA accumulated by P. putida CA-3 cells. The highest PHA content (% cell dry wt.) from an aromatic carbon source was 59% when 15mM phenylvaleric acid was supplied as the sole source of carbon and energy. This corresponded to a maximum PHA yield of 0.42 g PHA/g carbon supplied. In and attempt to increase the level of PHA accumulated from related growth substrates acrylic acid was added to the growth medium. However, the addition of various concentrations of acrylic acid to the growth medium had either no effect or decreased the PHA content of the cell accumulated from phenylalkanoic acids by P. putida CA-3.  相似文献   

9.
It has been shown that Pseudomonas putida GPo1 is able to grow in continuous culture simultaneously limited by ammonium (N source) and octanoate (C source), and concomitantly accumulate poly([R]-3-hydroxyalkanoate) (PHA). Under such growth conditions the material properties of PHA can be fine-tuned if a second PHA precursor substrate is supplied. To determine the range of dual carbon and nitrogen (C, N)-limited growth conditions, tedious chemostat experiments need to be carried out for each carbon source separately. To determine the growth regime, the C/N ratio of the feed (f) to a chemostat was changed in a stepwise manner at a constant dilution rate of 0.3/h. Dual-(C, N)-limited growth was observed between C(f) /N(f) ≤ 6.4 g/g and C(f) /N(f) >9.5 g/g. In the following, we analyzed alternative approaches, using continuous medium gradients at the same dilution rate, that do not require time consuming establishments of steady states. Different dynamic approaches were selected in which the C(f) /N(f) ratio was changed continuously through a convex increase of C(f) , a convex increase of N(f) , or a linear decrease of C(f) (gradients 1, 2, and 3, respectively). In these experiments, the dual-(C, N)-limited growth regime was between 7.2 and 11.0 g/g for gradient 1, 4.3 and 6.9 g/g for gradient 2, and 5.1 and 8.9 g/g for gradient 3. A mathematical equation was developed that compensated a time delay of the gradient that was caused by the wash-in/wash-out effects of the medium feed.  相似文献   

10.
The outer membrane of microbial cells forms an effective barrier for hydrophobic compounds, potentially causing an uptake limitation for hydrophobic substrates. Low bioconversion activities (1.9 U g(cdw)(-1)) have been observed for the ω-oxyfunctionalization of dodecanoic acid methyl ester by recombinant Escherichia coli containing the alkane monooxygenase AlkBGT of Pseudomonas putida GPo1. Using fatty acid methyl ester oxygenation as the model reaction, this study investigated strategies to improve bacterial uptake of hydrophobic substrates. Admixture of surfactants and cosolvents to improve substrate solubilization did not result in increased oxygenation rates. Addition of EDTA increased the initial dodecanoic acid methyl ester oxygenation activity 2.8-fold. The use of recombinant Pseudomonas fluorescens CHA0 instead of E. coli resulted in a similar activity increase. However, substrate mass transfer into cells was still found to be limiting. Remarkably, the coexpression of the alkL gene of P. putida GPo1 encoding an outer membrane protein with so-far-unknown function increased the dodecanoic acid methyl ester oxygenation activity of recombinant E. coli 28-fold. In a two-liquid-phase bioreactor setup, a 62-fold increase to a maximal activity of 87 U g(cdw)(-1) was achieved, enabling the accumulation of high titers of terminally oxyfunctionalized products. Coexpression of alkL also increased oxygenation activities toward the natural AlkBGT substrates octane and nonane, showing for the first time clear evidence for a prominent role of AlkL in alkane degradation. This study demonstrates that AlkL is an efficient tool to boost productivities of whole-cell biotransformations involving hydrophobic aliphatic substrates and thus has potential for broad applicability.  相似文献   

11.
Pseudomonas putida KT2442 produces medium-chain-length polyhydroxyalkanoates consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxytetradecanoate (3HTD) from relevant fatty acids. P. puitda KT2442 was found to contain key fatty acid degradation enzymes encoded by genes PP2136, PP2137 (fadB and fadA) and PP2214, PP2215 (fadB2x and fadAx), respectively. In this study, the above enzymes and other important fatty acid degradation enzymes, including 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA dehydrogenase encoded by genes PP2047 and PP2048, respectively, were studied for their effects on PHA structures. Mutant P. puitda KTQQ20 was constructed by knocking out the above six genes and also 3-hydroxyacyl-CoA-acyl carrier protein transferase encoded by PhaG, leading to a significant reduction of fatty acid β-oxidation activity. Therefore, P. puitda KTQQ20 synthesized homopolymer poly-3-hydroxydecanoate (PHD) or P(3HD-co-84mol% 3HDD), when grown on decanoic acid or dodecanoic acid. Melting temperatures of PHD and P(3HD-co-84mol% 3HDD) were 72 and 78 °C, respectively. Thermal and mechanical properties of PHD and P(3HD-co-84mol% 3HDD) were much better as compared with an mcl-PHA, consisting of lower content of C10 or C12 monomers. For the first time, it was shown that homopolymer PHD and 3HDD monomers dominating PHA could be synthesized by β-oxidation inhibiting P. putida grown on relevant carbon sources.  相似文献   

12.
A functional antibody highly specific for polymerase C1 of Pseudomonas oleovorans GPo1 was raised and used to determine polymerase C1 levels in in vivo experiments. The polymerase C1 antibodies did not show a cross-reaction with polymerase C2 of P. oleovorans. In wild-type P. oleovorans GPo1 and Pseudomonas putida KT2442, amounts of 0.075 and 0.06% polymerase relative to total protein, respectively, were found. P. oleovorans GPo1(pGEc405), which contained additional copies of the polymerase C1-encoding gene under the control of its native promoter, contained 0.5% polymerase C1 relative to total protein. Polymerase C1 reached 10% of total cell protein when the polymerase C1-encoding gene was overexpressed through the P(alk) promoter in P. oleovorans GPo1(pET702, pGEc74). Amounts of poly(R-3-hydroxyalkanoate) (PHA) increased significantly under non-nitrogen-limiting conditions when additional polymerase C1 was expressed in P. oleovorans. Whereas P. oleovorans produced 34% (wt/wt) PHA under these conditions, a PHA level of 64% (wt/wt) could be reached for P. oleovorans GPo1(pGEc405) and a PHA level of 52% (wt/wt) could be reached for P. oleovorans GPo1(pET702, pGEc74) after induction, compared to a PHA level of 13% for the uninduced control. All recombinant Pseudomonas strains containing additional polymerase C1 showed small changes in their PHA composition. Larger amounts of 3-hydroxyhexanoate monomer and smaller amounts of 3-hydroxyoctanoate and -decanoate were found compared to those of the wild type. Two different methods were developed to quantify rates of incorporation of new monomers into preexisting PHA granules. P. oleovorans GPo1 cells grown under nitrogen-limiting conditions showed growth stage-dependent incorporation rates. The highest PHA synthesis rates of 9.5 nmol of C8/C6 monomers/mg of cell dry weight (CDW)/min were found during the mid-stationary phase, which equals a rate of production of 80 g of PHA/kg of CDW/h.  相似文献   

13.
Ruth K  de Roo G  Egli T  Ren Q 《Biomacromolecules》2008,9(6):1652-1659
Pseudomonas putida GPo1 is able to accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules as storage materials. PHA granules were isolated and analyzed for protein activities. An acyl-CoA-synthetase (ACS1) activity was detected from the purified PHA granules. The corresponding gene acs1 was then cloned from P. putida GPo1. With the genomic walking technique, a homologue acs2 located upstream of acs1 was discovered and cloned. Fusions of both acs1 and acs2 with the gene encoding the green fluorescent protein (GFP) were constructed and expressed in GPo1. In vivo fluorescence microscopy studies showed that the fluorescence generated from the ACS1-GFP was mainly associated with the PHA granules, whereas that from ACS2-GFP was mainly with the membrane of the cells. In the control strain (containing GFP alone) fluorescence was distributed evenly in the cytoplasm. We concluded that ACS1 is located on the PHA granules and may play a central role in mobilization of PHA, for example, conversion of hydroxycarboxylic acid monomers to hydroxycarboxyl-CoA, which can be further utilized by the cells.  相似文献   

14.
The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.  相似文献   

15.
Kinetics of phenol biodegradation in the presence of glucose   总被引:10,自引:0,他引:10  
The kinetics of utilization of glucose, phenol, and their mixtures by Pseudomonas putida (ATCC 17514) were studied with a continuously aerated, jacketed batch reactor operating at 28 degrees C and pH 7.2. It was found that when glucose is the sole carbon and energy source, the culture utilizes it following Monod kinetics. When phenol is the sole carbon and energy source, the culture biodegrades it following Andrews (inhibitory) kinetics. When both glucose and phenol are present in the medium, the culture uses them simultaneously but with lower specific rates. Reduction of the specific substrate utilization rates indicates that the two substances are involved in a cross-inhibitory pattern which can be classified as uncompetitive. The values of the kinetic interaction constants suggest that glucose inhibits the specific rate of phenol removal much more than phenol inhibits the specific rate of glucose utilization. The results suggest that substitutable substrates which are dissimilar in origin and molecular structure may be involved in an uncompetitive cross-inhibitory interaction when they are simultaneously removed. It is also concluded that the use of easily degradable substrates may not enhance the per-unit amount of biomass removal of compounds which are classified as toxic. A general classification of kinetic interactions between substitutable resources is proposed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
Pseudomonas mendocina strain 0806 was isolated from oil-contaminated soil and found to produce polyesters consisting of medium chain length 3-hydroxyalkanoates (mclPHAs). The monomers of mclPHAs contained even numbers of carbon atoms, such as 3-hydroxyhexanoate (HHx or C6), 3-hydroxyoctanoate (HO or C8), and/or 3-hydroxydecanoate (HD or C10) as major components when grown on many carbon sources unrelated to their monomeric structures, such as glucose, citric acid, and carbon sources related to their monomeric structures, such as myristic acid, octanoate, or oleic acid. On the other hand, PHA containing both even and odd numbers of hydroxyalkanoates (HA) monomers was synthesized when the strain was grown on tridecanoic acid. The molar ratio of carbon to nitrogen (C/N) had a significant effect on PHA composition: the strain produced PHAs containing 97–99% of HD monomer when grown in a glucose ammonium sulfate medium of C/N<20, and 20% HO, and 80% of the HD monomer when growth was conducted in media containing C/N>40. It was demonstrated that the HO/HD ratio in the polymers remained constant in media with a constant C/N ratio, regardless of the glucose concentration. Up to 3.6 g/L cell dry weight containing 45% of PHAs was produced when the strain was grown for 48 h in a medium containing 20 g/L glucose with a C/N ratio of 40.  相似文献   

17.
Sheu DS  Lee CY 《Journal of bacteriology》2004,186(13):4177-4184
The substrate specificity of polyhydroxyalkanoate (PHA) synthase 1 (PhaC1(Pp), class II) from Pseudomonas putida GPo1 (formerly known as Pseudomonas oleovorans GPo1) was successfully altered by localized semirandom mutagenesis. The enzyme evolution system introduces multiple point mutations, designed on the basis of the conserved regions of the PHA synthase family, by using PCR-based gene fragmentation with degenerate primers and a reassembly PCR. According to the opaqueness of the colony, indicating the accumulation of large amounts of PHA granules in the cells, 13 PHA-accumulating candidates were screened from a mutant library, with Pseudomonas putida GPp104 PHA- as the host. The in vivo substrate specificity of five candidates, L1-6, D7-47, PS-A2, PS-C2, and PS-E1, was evaluated by the heterologous expression in Ralstonia eutropha PHB(-)4 supplemented with octanoate. Notably, the amount of 3-hydroxybutyrate (short-chain-length [SCL] 3-hydroxyalkanoate [3-HA] unit) was drastically increased in recombinants that expressed evolved mutant enzymes L1-6, PS-A2, PS-C2, and PS-E1 (up to 60, 36, 50, and 49 mol%, respectively), relative to the amount in the wild type (12 mol%). Evolved enzyme PS-E1, in which 14 amino acids had been changed and which was heterologously expressed in R. eutropha PHB(-)4, not only exhibited broad substrate specificity (49 mol% SCL 3-HA and 51 mol% medium-chain-length [MCL] 3-HA) but also conferred the highest PHA production (45% dry weight) among the candidates. The 3-HA and MCL 3-HA units of the PHA produced by R. eutropha PHB(-)4/pPS-E1 were randomly copolymerized in a single polymer chain, as analytically confirmed by acetone fractionation and the 13C nuclear magnetic resonance spectrum.  相似文献   

18.
Pseudomonas putida U grown in a chemically defined medium containing octanoic acid as the sole carbon source accumulated a homopolymer of poly(3-hydroxyoctanoate) as intracellular reserve material, and metabolized the polymer during the late exponential phase of growth. Kinetic measurement of the uptake of [1-14C]octanoic acid by cells at 34°C in 85 mM phosphate buffer, pH 7.0 showed linear uptake for at least 2 min and the calculated Km and Vmax were 100 μM and 9 nmol min−1 respectively. This transport system is constitutive, energy-dependent, and is strongly inhibited by structural analogs of octanoic acid, by various fatty acids with a carbon length higher than C5 and by certain phenyl derivatives.  相似文献   

19.
Pseudomonas oleovorans (ATCC 29347) was grown in batch and chemostat cultures with citrate, hexanoate, heptanoate, octanoate, and nonanoate as single carbon substrates. The growth medium for batch cultures was adjusted such that nitrogen (NH(4)(+)) limitation terminated the exponential-growth phase. During batch cultivation with octanoate or nonanoate the biomass continued to increase after depletion of ammonium due to the accumulation of medium-chain-length poly[(R)-3-hydroxyalkanoates] (mcl-PHAs). Additionally, a significant rate of mcl-PHA accumulation was also observed in the exponential-growth phase of batch cultures. It is well known that the accumulation of reserve materials is strongly dependent on the ratio of nutrients (here of carbon, C, and of nitrogen, N) and that in a batch culture the ratio of C:N is continuously changing. Therefore, we have also investigated the effect of defined ratios of C:N under constant cultivation conditions, namely at a fixed dilution rate (D) in a chemostat fed with different medium C:N ratios. These experiments were performed at a constant D of 0.2 h(-1). The concentration of the nitrogen source in the inflowing medium (N()) was kept constant, while its carbon concentration (C()) was increased stepwise, resulting in an increase of the medium carbon to nitrogen ratio (C()/N() ratio). The culture parameters and the cell composition of steady-state cultures were determined as a function of the C()/N() ratio in the feed medium. Mcl-PHA accumulation was detected during growth with the fatty acids, and three distinct regimes of growth limitation were discovered: In addition to carbon limitation at low, and nitrogen limitation at high C()/N() ratios, an intermediate growth regime of simultaneous limitation by carbon and nitrogen was detected where both substrates were used to completion. The width of this dual-nutrient-limited growth regime was dependent on the change in the yield factors for carbon and nitrogen (Y(X/C), Y(X/N)) measured during single-nutrient-limited growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号