首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The extractions of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo were calculated from measurements of their arterial and coronary sinus blood concentration. Elevation of plasma free fatty acid concentrations by infusion of intralipid and heparin resulted in increased extraction of free fatty acids and diminished extractions of glucose, lactate and pyruvate by the heart. It is suggested that metabolism of free fatty acids by the heart in vivo, as in vitro, may impair utilization of these substrates. These effects of elevated plasma free fatty acid concentrations on extractions by the heart in vivo were reversed by injection of dichloroacetate, which also improved extraction of lactate and pyruvate by the heart in vivo in alloxan diabetes. 2. Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts from fed normal or alloxan-diabetic rats perfused with glucose and insulin. Dichloroacetate inhibited oxidation of acetate and 3-hydroxybutyrate and partially reversed inhibitory effects of these substrates on the oxidation of glucose. In rat diaphragm muscle dichloroacetate inhibited oxidation of acetate, 3-hydroxybutyrate and palmitate and increased glucose oxidation and pyruvate oxidation in diaphragms from alloxan-diabetic rats. Dichloroacetate increased the rate of glycolysis in hearts perfused with glucose, insulin and acetate and evidence is given that this results from a lowering of the citrate concentration within the cell, with a consequent activation of phosphofructokinase. 3. In hearts from normal rats perfused with glucose and insulin, dichloroacetate increased cell concentrations of acetyl-CoA, acetylcarnitine and glutamate and lowered those of aspartate and malate. In perfusions with glucose, insulin and acetate, dichloroacetate lowered the cell citrate concentration without lowering the acetyl-CoA or acetylcarnitine concentrations. Measurements of specific radioactivities of acetyl-CoA, acetylcarnitine and citrate in perfusions with [1-(14)C]acetate indicated that dichloroacetate lowered the specific radio-activity of these substrates in the perfused heart. Evidence is given that dichloroacetate may not be metabolized by the heart to dichloroacetyl-CoA or dichloroacetylcarnitine or citrate or CO(2). 4. We suggest that dichloroacetate may activate pyruvate dehydrogenase, thus increasing the oxidation of pyruvate to acetyl-CoA and acetylcarnitine and the conversion of acetyl-CoA into glutamate, with consumption of aspartate and malate. Possible mechanisms for the changes in cell citrate concentration and for inhibitory effects of dichloroacetate on the oxidation of acetate, 3-hydroxybutyrate and palmitate are discussed.  相似文献   

2.
Excessive intake of fructose increases lipogenesis in the liver, leading to hepatic lipid accumulation and development of fatty liver disease. Metabolic alterations in the liver due to fructose intake have been reported in many studies, but the effect of fructose administration on hepatic gluconeogenesis is not fully understood. The aim of this study was to evaluate the acute effects of fructose administration on fasting-induced hepatic gluconeogenesis. C57BL/6J mice were administered fructose solution after 14 h of fasting and plasma insulin, glucose, free fatty acids, and ketone bodies were analysed. We also measured phosphorylated AKT and forkhead box O (FoxO) 1 protein levels and gene expression related to gluconeogenesis in the liver. Furthermore, we measured glucose production from pyruvate after fructose administration. Glucose-administered mice were used as controls. Fructose administration enhanced phosphorylation of AKT in the liver, without increase of blood insulin levels. Blood free fatty acids and ketone bodies concentrations were as high as those in the fasting group after fructose administration, suggesting that insulin-induced inhibition of lipolysis did not occur in mice administered with fructose. Fructose also enhanced phosphorylation of FoxO1 and suppressed gluconeogenic gene expression, glucose-6-phosphatase activity, and glucose production from pyruvate. The present study suggests that acute fructose administration suppresses fasting-induced hepatic gluconeogenesis in an insulin-independent manner.  相似文献   

3.
Zucker diabetic fatty rats develop type 2 diabetes concomitantly with peripheral insulin resistance. Hepatocytes from these rats and their control lean counterparts have been cultured, and a number of key parameters of glucose metabolism have been determined. Glucokinase activity was 4.5-fold lower in hepatocytes from diabetic rats than in hepatocytes from healthy ones. In contrast, hexokinase activity was about 2-fold higher in hepatocytes from diabetic animals than in healthy ones. Glucose-6-phosphatase activity was not significantly different. Despite the altered ratios of glucokinase to hexokinase activity, intracellular glucose 6-phosphate concentrations were similar in the two types of cells when they where incubated with 1-25 mM glucose. However, glycogen levels and glycogen synthase activity ratio were lower in hepatocytes from diabetic animals. Total pyruvate kinase activity and its activity ratio as well as fructose 2,6-bisphosphate concentration and lactate production were also lower in cells from diabetic animals. All of these data indicate that glucose metabolism is clearly impaired in hepatocytes from Zucker diabetic fatty rats. Glucokinase overexpression using adenovirus restored glucose metabolism in diabetic hepatocytes. In glucokinase-overexpressing cells, glucose 6-phosphate levels increased. Moreover, glycogen deposition was greatly enhanced due to the activation of glycogen synthase. Pyruvate kinase was also activated, and fructose-2,6-bisphosphate concentration and lactate production were increased in glucokinase-overexpressing diabetic hepatocytes. Overexpression of hexokinase I did not increase glycogen deposition. In conclusion, hepatocytes from Zucker diabetic fatty rats showed depressed glycogen and glycolytic metabolism, but glucokinase overexpression improved their glucose utilization and storage.  相似文献   

4.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

5.
Regional substrate exchange was studied in 12 healthy males during 90 min of bicycle exercise at 30% of maximal O2 consumption with a 20-min recovery. Six subjects received an intravenous fructose infusion (8.5 mmol/min) from 40 min of exercise to the end of recovery. Splanchnic glucose output, muscle glucose uptake, arterial glucose, and insulin were uninfluenced by the infusion. The respiratory exchange ratio rose to 0.93 +/- 0.04, and arterial free fatty acids fell by 50% (P less than 0.05). Fructose was taken up by splanchnic tissues (45% of administered load), leg muscle (28%), and resting muscle (28%). During infusion, arterial lactate and pyruvate rose two- to threefold, and these substrates were released from splanchnic tissues and taken up by exercising and resting muscle. Splanchnic release of lactate, pyruvate, and glucose accounted for 78% of fructose uptake at 90 min of exercise. Uptake of fructose, lactate, and pyruvate accounted for 55% and together with glucose for 103% of the total oxidative metabolism by exercising muscle. The regional fructose uptakes and lactate exchanges persisted throughout recovery. The present results indicate that fructose infusion during leg exercise 1) results in increased carbohydrate oxidation from fructose, lactate, and pyruvate in exercising muscle, 2) exerts a glycogenic effect in resting muscle and liver during exercise and in liver and muscle recovering from exercise, and 3) does not interfere with glucose metabolism, and that fructose transport into muscle differs from that of glucose.  相似文献   

6.
We examined the influence of various carbohydrates of fuel homeostasis and glycogen utilization during prolonged exercise. Seventy-five grams of glucose, fructose, or placebo were given orally to eight healthy males 45 min before ergometer exercise performed for 2 h at 55% of maximal aerobic power (VO2max). After glucose ingestion, the rises in plasma glucose (P less than 0.01) and insulin (P less than 0.001) were 2.4- and 5.8-fold greater than when fructose was consumed. After 30 min of exercise following glucose ingestion, the plasma glucose concentration had declined to a nadir of 3.9 +/- 0.3 mmol/l, and plasma insulin had returned to basal levels. The fall in plasma glucose was closely related to the preexercise glucose (r = 0.98, P less than 0.001) and insulin (r = 0.66, P less than 0.05) levels. The rate of endogenous glucose production and utilization rose similarly by 2.8-fold during exercise in fructose group and were 10-15% higher than in placebo group (P less than 0.05). Serum free fatty acid levels were 1.5- to 2-fold higher (P less than 0.01) after placebo than carbohydrate ingestion. Muscle glycogen concentration in the quadriceps femoris fell in all three groups by 60-65% (P less than 0.001) during exercise. These data indicate that fructose ingestion, though causing smaller perturbations in plasma glucose, insulin, and gastrointestinal polypeptide (GIP) levels than glucose ingestion, was no more effective than glucose or placebo in sparing glycogen during a long-term exercise.  相似文献   

7.
Rajasekar P  Anuradha CV 《Life sciences》2007,80(13):1176-1183
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.  相似文献   

8.
Whereas glucose is a major substrate for pulmonary lipid synthesis, fructose has also been suggested as a potential substrate. In vivo pulmonary fatty acid synthesis is depressed in hormonally deprived conditions, such as diabetes, and this can be modified by fructose feeding, but not by glucose feeding. In this study the glucose and fructose utilizations were compared in normal, diabetic and fasting states using isolated perfused rat lungs. When (U-14C)- or (5-3H)-glucose was used as substrate, glucose utilization by lung was reduced by 50% in both the fasting and diabetic animals compared to the normal controls. Using (U-14C)-glucose as substrate, the incorporation of (14C)-label in various metabolites of glucose was significantly depressed. For example, this reduction was 50% in lactate, pyruvate and CO2, 15% in ethanol-insoluble fraction, 65% in neutral lipids, 75% in phospholipids, 80% in fatty acid moiety, 40% in deacylated fraction and 10% in the polysaccharide fractions. Refeeding the fasted animals or insulin treatment to the diabetic animals restored these depressed (14C)-recoveries to the normal levels. Fructose utilization was less than 10% of glucose utilization, but remained unaffected by fasting and diabetic states. In addition, pulmonary hexokinase enzyme activity was lowered significantly in fasting and diabetic animals, whereas fructokinase enzyme activity was not altered. Despite the low rate of fructose utilization, these results suggest that fructose may serve as an alternative substrate for pulmonary phospholipid synthesis when glucose utilization is significantly depressed.  相似文献   

9.
Gluconeogenesis and ketogenesis were studied in isolated hepatocytes obtained from normal and alloxan diabetic rats. Insulin treatment maintained near-normal blood glucose levels and caused an increase in glycogen deposition. The third day after insulin withdrawal the rats displayed a diabetic syndrome marked by progressive hyperglycemia and glycogen depletion. Net glucose production in liver cells isolated from alloxan diabetic rats progressively increased with time up to 72 hr after the last in vivo insulin injection. Maximal glucose production was observed at 72 hr with 10 mM alanine, lactate, pyruvate, or fructose. Glucose production decreased at 96 hr. The same pattern was observed with the incorporation of labeled bicarbonate into glucose. Ketogenesis in liver cells and hepatic lipid content also peaked at 72 hr.  相似文献   

10.
Plasma of insulin-treated diabetics and of newborn infants of insulin-treated diabetic mothers contains insulin antibodies which invalidates the radioimmunoassay of insulin. Therefore, the endogenous insulin antibody complex must be splitted at a pH lower than 5 and the total IRI (TIRI) is separated by ethanol extraction. It was investigated the recovery rate in dependence upon plasma volume used for extraction. By reduction of used plasma volume from 500 to 200 mul per extraction the recovery rate was increased from 65.1 +/- 8.4 to 88.3 +/- 4.2% (mean +/- SEM). The low plasma volume of 200 mul for TIRI extraction made it possible to determine TIRI during glucose loads of newborn infants. To eliminate different conditions of incubation for standard and unknown plasma samples the TIRI levels were computed by means of so-called "extracted" standard curve, obtained with extracted insulin from standard insulin dilution in insulin-free pooled human plasma. Using the described method a temporary regeneration of insulin secretion of a newly diagnosed juvenile diabetic after insulin treatment could be shown. In contrast to newborn infants of healthy mothers a biphasic/insulin release was found during the intravenous glucose loads in newborn infants of insulin-treated diabetic mothers.  相似文献   

11.
1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2'-O-dibutyryl 3':5'-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [(14)C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of (14)C in various products after 2h of incubation. Fluxes of [(14)C]acetate, [(14)C]pyruvate or [(14)C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolasextriose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD(+)]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the ;malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.  相似文献   

12.
13.
14.
This study was designed to assess the effect of the dimethyl ester of succinic acid (SAD) upon the hormonal and metabolic response to a 60-min exercise in overnight-starved Goto-Kakizaki rats. Twenty Goto-Kakizaki rats were starved overnight and then either maintained at rest or obliged to swim for 60 min. Half of the rats were injected intraperitoneally with the dimethyl ester of succinic acid (SAD, 5.0 micromol g(-1) body wt) immediately before exercise (or 60 min of rest). In the hereditarily diabetic rats, overnight starvation lowered the plasma D- glucose, insulin and lactate concentrations, while increasing that of free fatty acids and beta-hydroxybutyrate. In resting rats, the injection of SAD increased the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids. In control animals, not injected with SAD, exercise increased the plasma concentration of D- glucose, lactate and glycerol, whilst lowering both that of insulin and the glycogen content of liver, heart and muscle. The injection of SAD before exercise failed to prevent and, on occasion, even accentuated the changes in both the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids, whilst minimizing the increase in lactate concentration otherwise caused by exercise. Nevertheless, the comparison between resting and exercising rats, both injected with SAD, suggested that the ester abolished the exercise-induced rise in D-glucose, glycerol and fatty acid concentrations. By comparison with comparable experiments conducted in overnight-starved normal rats, these findings emphasize both the difference between normal and diabetic rats in their metabolic response to exercise, especially in terms of changes in glycemia, and the usefulness of SAD to compensate for the increased consumption of endogenous nutrients during exercise.  相似文献   

15.
Insulin-like growth factors (IGFs/somatomedins) have been implicated as regulators of fetal growth. This study investigates whether IGFs are related to macrosomia in infants of normal or insulin-dependent diabetic mothers. Cord concentrations of IGF-I (radioimmunoassay), total IGF (radioreceptor assay) and IGF binding protein (radiobinding assay) were measured in 15 term infants of diabetic mothers (IDM) and 29 term infants of nondiabetic mothers. In infants of control mothers cord IGF and total IGF levels were significantly higher in large-for-gestational-age than appropriate-for-gestational-age infants; but this relationship was lost in IDM, in whom IGF-I concentrations were similar to control infants. IGF binding protein levels were not significantly different in any of these groups. The absence of elevated IGF levels in macrosomic IDM indicates that the pathologic process does not involve a simple increase in these growth factors.  相似文献   

16.
Insulin infusion through the portal vein immediately after a pulse of [3-14C]pyruvate in 24 hr starved rats enhanced the appearance of [14C]glucose at 2, 5 and 10 min and glucose specific activity at 1, 2 and 20 min in blood collected from the cava vein at the level of the suprahepatic veins. Insulin infusion for 5 min decreased liver pyruvate concentration and enhanced both liver and plasma lactate/pyruvate ratio, and it decreased the plasma concentration of all amino acids. When insulin was infused together with glucose, [14C]glucose levels and glucose specific activity decreased in blood but there was a marked increase in liver [14C]glycogen, glycogen specific activity and glycogen concentration, and an increase in liver lactate/pyruvate ratio. The effect of insulin plus glucose infusion on plasma amino acids concentration was smaller than that found with insulin alone. It is proposed that insulin effect enhancing liver gluconeogenesis is secondary to its effect either enhancing liver glycolysis which modifies the liver's cytoplasmic oxidoreduction state to its more reduced form, increasing liver amino acids consumption or both. In the presence of glucose, products of gluconeogenesis enhanced by insulin are diverted into glycogen synthesis rather than circulating glucose. This together with results of the preceding paper (Soley et al., 1985), indicates that glucose enhances liver glycogen synthesis from C3 units in the starved rat, the process being further enhanced in the presence of insulin.  相似文献   

17.
To elucidate the effect of nutrition during induction on peripheral muscle responsiveness to insulin, the incorporation of radiolabeled glucose to glycogen and the uptake of radiolabeled deoxyglucose were studied in isolated diaphragms from the fetuses of normal and diabetic pregnant rats in vitro. Basal- and insulin-stimulated incorporation of [1-14C]glucose into diaphragm glycogen were greater in the fetuses of diabetic mothers (IDM) than in normal fetuses, but there was no difference in the degree of stimulation by insulin of labeled glucose into glycogen between normal fetuses and IDM. Diaphragms from normal fetuses and IDM had the same basal uptake of 2-deoxy-[1-3H]glucose as well as insulin-stimulated uptake. Consequently the sensitivity of glucose uptake to insulin was similar both in normal fetuses and IDM. These data indicate that glucose utilization (incorporation of labeled glucose into glycogen) was increased in IDM, but that the response of glucose uptake and glycogenesis to insulin was not altered.  相似文献   

18.
The rate of glucose turnover (R(a)) and gluconeogenesis (GNG) via pyruvate were quantified in seven full-term healthy babies between 24 and 48 h after birth and in twelve low-birth-weight infants on days 3 and 4 by use of [(13)C(6)]glucose and (2)H(2)O. The preterm babies were receiving parenteral alimentation of either glucose or glucose plus amino acid with or without lipids. The contribution of GNG to glucose production was measured by the appearance of (2)H on C-6 of glucose. Glucose R(a) in full-term babies was 30 +/- 1.7 (SD) micromol. kg(-1). min(-1). GNG via pyruvate contributed approximately 31% to glucose R(a). In preterm babies, the contribution of GNG to endogenous glucose R(a) was variable (range 6-60%). The highest contribution was in infants receiving low rates of exogenous glucose infusion. In an additional group of infants of normal and diabetic mothers, lactate turnover and its incorporation into glucose were measured within 4-24 h of birth by use of [(13)C(3)]lactate tracer. The rate of lactate turnover was 38 micromol. kg(-1). min(-1), and lactate C, not corrected for loss of tracer in the tricarboxylic acid cycle, contributed approximately 18% to glucose C. Lactate and glucose kinetics were similar in infants that were small for their gestational age and in normal infants or infants of diabetic mothers. These data show that gluconeogenesis is evident soon after birth in the newborn infant and that, even after a brief fast (5 h), GNG via pyruvate makes a significant contribution to glucose production in healthy full-term infants. These data may have important implications for the nutritional support of the healthy and sick newborn infant.  相似文献   

19.
The rate of flux through pyruvate kinase in isolated rat hepatocytes has been estimated by a new procedure involving direct spectrophotometric measurement of pyruvate production by liver cells suspended in an oxygenated medium containing lactate dehydrogenase and NADH. For the substrates, glucose, dihydroxyacetone, fructose, propionate and galactose only the rate of pyruvate production from glucose and galactose was inhibited by the addition of 1 μM-glucagon. These results imply that glucagon mediates glycolytic flux at a point in the pathway preceding the point of entry of fructose and dihydroxyacetone and not at pyruvate kinase.  相似文献   

20.
G Gács 《Endokrinologie》1976,67(1):85-89
The effect of congestive cardiac failure, hypoxia and hypoglycaemia on glucose tolerance and insulin secretion were studied in selected groups of infants with congenital heart disease. Fasting blood glucose level was significantly decreased in patients with congestive heart failure and in cyanotic infants without congestive heart failure. In the former it seemed to be correlated with the degree of malnutrition, while in cyanotic infants it was independent of the nutritional state. Plasma insulin levels were reduced in infants, with congestive cardiac failure, although their glucose tolerance test and free fatty acid concentrations were normal. It is suggested that the decreased plasma insulin concentration was a consequence of adaptation to reduced requirements. Glucose tolerance and insulin secretion were not affected by hypoxia or hypoglycaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号