首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new loci, myogenic factor 5 (MYF5), complement 1 receptor (CIR), myosin-like heavy chain (MYHL), islet amyloid polypeptide (IAPP), and alpha-2-macroglobulin receptor (A2MR), were mapped onto sheep chromosome 3q by Southern hybridization to a panel of chro-mosomally characterized sheep × hamster cell hybrid lines. The location of the triose phosphate isomerase (TPI1) gene and one of the nucleolar organizer regions (RNR) on sheep 3q was confirmed by Southern analysis. This study provides further evidence for the existence of a large conserved chromosomal segment comprising much of sheep chromosome 3q, cattle chromosome 5, and human chromosome 12. The distal evolutionary breakpoint on human chromosome 12, producing the chromosomal segment U23 in cattle marked by aldehyde dehydrogenase (ALDH2), also produces a separate segment in sheep. Neither ALDH2 nor pancreatic lipase (PLA2), which is also distally located on human chromosome 12, were mapped onto sheep chromosome 3q.  相似文献   

2.
A human cDNA probe of the tumour protein p53 (TP53) was used to localize the homologous porcine gene by in situ hybridization. The gene was mapped to chromosome 12q12-q14. Together with already known mapping data, these results confirm the localization of an evolutionary conserved linkage group on porcine chromosome 12 which is localized in man on chromosome 17, in cattle on chromosome 19, and in mice on chromosome 11.  相似文献   

3.
Six loci, apoliproprotein B (including Ag(x) antigen), immunoglobulin kappa constant region (IGKC), luteinizing hormone/choriogonadotrophin receptor, avian myelocytomatosis viral related oncogene, neuroblastoma derived, ornithine decarboxylase, and proopiomelanocortin (adrenocorticotropin/beta-lipotropin) (POMC), were newly assigned to sheep chromosome 3p using a chromosomally characterized minipanel of sheep-hamster cell hybrids. Isotopic in situ hybridization of IGKC to sheep chromosome 3p22–p17 is reported, confirming the cell hybrid assignment. As these loci are all known to map to human chromosome 2p, this study demonstrates that this chromosomal segment is extensively conserved in sheep. Only POMC has been previously assigned to cattle chromosome 11, which is the equivalent of sheep chromosome 3p. Therefore, we predict that the other loci assigned in this study to sheep 3p are likely to be located on cattle 11. The provisional assignment of an additional locus, annexin-like to sheep chromosome 3p is also reported.  相似文献   

4.
Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.  相似文献   

5.
There is a high level of conservation between human chromosomes and bovine syntenic groups. One such comparison is between human chromosome 12 and bovine chromosome 5, where at least 16 loci have been shown to be conserved in an homologous segment. However, the degree of conservation of order of the loci on bovine chromosome 5 is unknown, and in general the conservation of order in comparisons between humans and cattle can only be speculated. We have estimated the recombination fractions between five of the loci that were previously published as mapping to bovine chromosome 5 by a combination of in situ hybridization and analysis of bovine-rodent somatic cell hybrid lines to determine whether order has been conserved in the homologous segment of bovine chromosome 5 and human chromosome 12. Recombination fractions were estimated in reference pedigrees of cattle. The loci were A2M, GSNL, HOX3, INT1, KRAS2, and PAH. Restriction fragment length polymorphisms for all loci were defined by screening a panel of eight restriction endonucleases. The linkage between loci was estimated using the lod score method, and all possible pairwise comparisons were made. A preliminary map was created by joining together loci that showed the smallest recombination fractions and the largest lod scores. A multipoint analysis was performed to estimate support for the most likely order. This order shows the relative inversion of some of the loci. Moreover, the distance spanned in cattle is less than a quarter the distance spanned in humans. Together, these data indicate that several chromosomal evolutionary events have occurred in the homologous segment shared by humans and cattle.  相似文献   

6.
Loci from human chromosome 12 were mapped in cattle to compare the gene order between species. Polymorphisms were detected in cattle in six loci that had been mapped with high precision in humans. Four of these loci, LALBA, SLC2A3, SYT1, and TPI1, mapped to bovine chromosome 5, and one, PLA2G1B, mapped to bovine chromosome 17. The sixth locus, SLC2A3L, due to a fragment produced by the SLC2A3 primers, maps to the telomeric region of BTA18. The differences in gene order between human chromosome 12 and cattle chromosome 5, when these loci are added to others already mapped in cattle, show evidence of significant rearrangement in gene order requiring several evolutionary events. There is also evidence in cattle chromosome 5 of the interspersal of material conserved on human chromosome 22 into the material conserved on human chromosome 12, consistent with ZOOFISH analyses. This analysis indicates that the larger block near the centromere is conserved on the long arm of human chromosome 12 and the smaller block near the telomere is conserved as part of the short arm of human chromosome 12. The level of variation detected in the amplified cattle DNA was approximately 1 variant per 464 nucleotides of haploid DNA using single-strand conformation polymorphism analysis. This corresponds to a per individual level of 1 variant per 1, 961 nucleotides of haploid DNA. This confirms lower genetic variability in cattle compared to humans but indicates the potential for millions of single nucleotide polymorphisms in cattle.  相似文献   

7.
The following loci, on human chromosome 13, have been newly assigned to sheep chromosome 10 using chromosomally characterized sheep-hamster cell hybrids: gap junction protein, beta 2, 26 kDa (connexin 26) (GJB2); gap junction protein, alpha 3, 46 kDa (connexin 46) (GJA3), and esterase D/formylglutathione hydrolase (ESD). This assignment of ESD is consistent with comparative mapping evidence, but not with an earlier report of it on sheep chromosome 3p26-p24. Cell hybrid analysis confirmed the location of another human chromosome 13 locus, retinoblastoma 1 (including osteosar-coma) (RBI), and the anonymous ovine genomic sequence RP11 on sheep chromosome 10. Isotopic in situ hybridization was used to regionally localize RP11 on to sheep 10q15-q22. The location of microsatellites AGLA226, OarDB3, OarHH41, OarVH58, and TGLA441, previously assigned to sheep chromosome 10 by linkage analysis, was confirmed by polymerase chain reaction using the cell hybrid panel. These mapping data provide further evidence that sheep chromosome 10 is the equivalent of cattle chromosome 12, and that these chromosomes show extensive conserved synteny with human chromosome 13.  相似文献   

8.
Sheep (OAR), goat (CHI) and cattle (BTA) R-banded chromosome preparations, obtained from synchronized cell cultures, were used to FISH-map leptin (LEP) and solute carrier family 26 member 2 (SLC26A2) genes on single chromosome bands. LEP maps on OAR4q32 and CHI4q32, being the first assignment of this gene to these two species. SLC26A2 maps on BTA7q24, OAR5q24 and CHI7q24. This gene, too, was assigned for the fist time to both sheep and goat chromosomes, while it was more precisely localized on a single chromosome band in cattle. Improved cytogenetic maps of BTA4/OAR4/CHI4 were constructed and compared with HSA7 revealing five main conserved segments and complex chromosome rearrangements, including a centromere repositioning, differentiating HSA7 and BTA4/OAR4/CHI4.  相似文献   

9.
We present the first radiation hybrid (RH) map of river buffalo (Bubalus bubalis) chromosome 6 (BBU6) developed with a recently constructed river buffalo whole-genome RH panel (BBURH(5000)). The preliminary map contains 33 cattle-derived markers, including 12 microsatellites, 19 coding genes and two ESTs, distributed across two linkage groups. Retention frequencies for markers ranged from 14.4% to 40.0%. Most of the marker orders within the linkage groups on BBU6 were consistent with the cattle genome sequence and RH maps. This preliminary RH map is the starting point for comparing gene order between river buffalo and cattle, presenting an opportunity for the examination of micro-rearrangements of these chromosomes. Also, resources for positional candidate cloning in river buffalo are enhanced.  相似文献   

10.
Artificial chromosome vectors are autonomous, replicating DNA sequences containing a centromere, two telomeres and origins of replication. Artificial chromosomes have been proposed as possible vectors for transferring very large sequences of DNA into animals. Our goal has been to insert the entire human heavy- and light-chain immunoglobulin loci into cattle as a step in developing a production system for large quantities of human therapeutic polyclonal antibodies. A mitotically stable fragment of chromosome 14, containing the human heavy-chain locus, was identified. A chromosome cloning system was used to transfer the human lambda locus from an unstable chromosome 22 fragment to the chromosome 14 fragment to create a human artificial chromosome (HAC) carrying both immunoglobulin loci. The HAC vector was introduced into bovine primary fibroblasts. Selected fibroblast clones were rejuvenated and expanded by producing cloned fetuses. Cloned fetal cells were selected and recloned to produce 21 healthy, transchromosomic (Tc) calves. Four were analyzed and shown to functionally rearrange both heavy- and light-chain human immunoglobulin loci and produce human polyclonal antibodies. These results demonstrate the feasibility of using HAC vectors for production of transgenic livestock. More importantly, Tc cattle containing human immunoglobulin genes may be used to produce novel human polyclonal therapeutics.  相似文献   

11.
By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.  相似文献   

12.
Yeo JS  Lee JY  Kim JW 《Journal of genetics》2004,83(3):245-250
We describe tests for detecting and locating quantitative trait loci (QTL) for traits in Hanwoo cattle. From results of a permutation test to detect QTL for marbling, we selected the microsatellite locus ILSTS035 on chromosome 6 for further analysis. K-means clustering analysis applied to five traits and nine DNA markers in ILSTS035 resulted in three cluster groups. Finally we employed the bootstrap test method to calculate confidence intervals using the resampling method to find major DNA markers. We conclude that the major markers of ILSTS035 locus on chromosome 6 of Hanwoo cattle are markers 235 bp and 266 bp.  相似文献   

13.
Human and sheep chromosome-specific probes were used to construct comparative painting maps between the pig (Suiformes), cattle and sheep (Bovidae), and humans. Various yet unknown translocations were observed that would assist in a more complete reconstruction of homology maps of these species. The number of homologous segments that can be identified with sheep probes in the pig karyotype exceeds that described previously by chromosome painting between two non-primate mammals belonging to the same order. Sheep probes painted 62 segments on pig autosomes and delineated not only translocations, but also 9 inversions. All inversions were paracentric and indicate that these rearrangements may be characteristic for chromosomal changes in suiforms. Hybridizations of all sheep painting probes to cattle chromosomes confirmed the chromosome conservation in bovids. In addition, we observed a small translocation that was previously postulated from linkage mapping data, but was not yet described by physical mapping. The chromosome painting data are complemented with a map of available comparative gene mapping data between pig and sheep genomes. A detailed table listing the comparative gene mapping data between pig and cattle genomes is provided. The reanalysis of the pig karyotype with a new generation of human paint probes provides an update of the human/pig comparative genome map and demonstrates two new chromosome homologies. Seven conserved segments not yet identified by chromosome painting are also reported. Received: 2 October 2000 / Accepted: 15 January 2001  相似文献   

14.
Chediak-Higashi syndrome in Japanese black cattle is a hereditary disease with prolonged bleeding time and partial albinism. In the present study, we mapped the locus responsible for the disease (CHS) by linkage analysis using microsatellite genotypes of paternal half-sib pedigrees obtained from commercial herds. Analysis revealed significant linkage between the CHS locus and marker loci on the proximal end of bovine chromosome 28. The CHS locus was mapped on the region incorporating the microsatellite markers BMC6020, BM2892, and RM016 with recombination fraction 0 and lod score 4.9-11.2. We also assigned the bovine CHS1/LYST, the homologue of the gene responsible for human Chediak-Higashi syndrome, to bovine chromosome 28 using a bovine/murine somatic cell hybrid panel. These findings suggest that a mutation in the CHS1/LYST gene is likely to be responsible for Chediak-Higashi syndrome in Japanese black cattle.  相似文献   

15.
The homeobox 2 (HOX2) and homeobox 3 (HOX3) clusters have been chromosomally assigned in cattle by in situ hybridization. The probes employed were a murine probe for the mapping of HOX2 to 19q17-qter and human probes for the mapping of HOX3 to 5q14-q23. These assignments confirm the chromosomal assignment of two syntenic groups, consisting of loci located on human chromosome 12 (bovine chromosome 5) and the long arm of human chromosome 17 (bovine chromosome 19).  相似文献   

16.
Polled, or the absence of horns, is a desirable trait for many cattle breeders. However, the presence of scurs, which are small horn-like structures that are not attached to the skull, can lower the value of an animal. The scurs trait has been reported as sex influenced. Using a genome scan with 162 autosomal microsatellite markers genotyped across three full-sib families, the scurs locus was mapped near BMS2142 on cattle chromosome 19 (LOD = 4.21). To more precisely map scurs, the families from the initial analysis and three additional families were genotyped for 16 microsatellite markers and SNPs in three genes on chromosome 19. In this subsequent analysis, the scurs locus was mapped 4 cM distal of BMS2142 (LOD = 4.46) and 6 cM proximal to IDVGA46 (LOD = 2.56). ALOX12 and MFAP4 were the closest genes proximal and distal, respectively, to the scurs locus. Three microsatellite markers on the X chromosome were genotyped across these six families but were not linked to scurs, further demonstrating that this trait was not sex linked. Because the polled locus has been mapped to the centromeric end of chromosome 1 and scurs has now been mapped to chromosome 19, these two traits are not linked in Bos taurus.  相似文献   

17.
为了研究水牛Y染色体的遗传多样性, 文章以滇东南水牛3个地方群体- 红河(HH)、西双版纳(BN)和普洱(PR)共31头公牛为研究对象, 选取14个家牛Y染色体特异性微卫星标记, 以检测这些标记在水牛Y染色体遗传多样性研究中的可行性。结果表明, 3个标记(INRA008、UMN0103和UMN0504)只有1个等位基因, 表现为单态; 3个标记(UMN1113、UMN0304和BC1.2)均为3个等位基因, 但呈单态; 3个标记(UMN0920、UMN0307和UMN3008)呈现无规律的梯状条带, 所以这9个标记都不适用于水牛的Y染色体遗传多样性研究; 只有5个标记(INRA124、INRA189、BM861、PBR1F1和UMN2001)具有多态性, 表明适用于水牛的Y染色体遗传多样性研究。这5个多态性Y染色体特异微卫星标记在滇东南水牛群体中的平均等位基因数(NA)为2.8000, 平均期望杂合度(He)为0.3998, 基因多样性(GD)为0.4144, 多态信息含量(PIC)为0.3245, Shannon信息熵(SI)为0.5849, 表明滇东南水牛群体的Y染色体具有中等遗传多态性。  相似文献   

18.
A polymorphism was identified in the bovine growth hormone receptor ( GHR ) gene by digesting polymerase chain reaction (PCR) products with the restriction enzyme Alul. Two alleles were segregating in cattle of Bos indicus descent, but one allele appears to be fixed in Bos taurus cattle. GHR was localized to bovine chromosome 20 using bovine-rodent hybrid cell lines and linkage analysis.  相似文献   

19.
Congenital multiple ocular defects (MOD) of Japanese black cattle is a hereditary ocular disorder with an autosomal recessive mode of inheritance showing developmental defects of the lens, retina and iris, persistent embryonic eye vascularization and microphthalmia. The MOD locus has been mapped by linkage analysis to a 6.6-cM interval on the proximal end of bovine chromosome 18, which corresponds to human chromosome 16q and mouse chromosome 8. To refine the MOD region in cattle, we constructed an integrated radiation hybrid (RH) map of the proximal region of bovine chromosome 18, which consisted of 17 genes and 10 microsatellite markers, using the SUNbRH7000 panel. Strong conservation of gene order was found among the corresponding chromosomal regions in cattle, human and mouse. The MOD-critical region was fine mapped to a 59.5-cR region that corresponds to a 6.3-Mb segment of human chromosome 16 and a 4.8-Mb segment of mouse chromosome 8. Several positional candidate genes, including FOXC2 and USP10, were identified in this region.  相似文献   

20.
At present, the density of genes on the bovine maps is extremely limited and current resolution of the human-bovine comparative map is insufficient for selection of candidate genes controlling many economic traits of interest in dairy cattle. This study describes the chromosomal mapping of 10 selected gene-associated markers to bovine linkage and radiation hybrid maps to improve the breakpoint resolution in the human-bovine comparative map near two previously identified quantitative trait loci for the linear type trait, dairy form. Two regions of conserved synteny not previously described are reported between the telomeric region of bovine chromosome 27 (BTA27) and human chromosome 3 (HSA3) p24 region and between the HSA4q34.1 region and BTA8. These data increase the number of genes positioned on the bovine gene maps, refine the human-bovine comparative map, and should improve the efficiency of candidate gene selection for the dairy form trait in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号