首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been established that the hydrogenase from autotrophically cultured Bradyrhizobium japonicum contains selenium as a bound constituent. About 80% of the enzyme selenium remains bound during precipitation with 5% trichloroacetic acid (TCA). However, 85% of the selenium bound to the enzyme is released by a combined treatment of urea, heat and TCA. Neither selenomethionine nor selenocysteine could be detected on analysis of anaerobically hydrolyzed enzyme. These results are consistent with the report showing that the structural genes for this enzyme do not contain a TGA codon (Sayavedra-Soto et al. 1988) which has been reported to code for selenocysteine incorporation into several proteins (Chambers et al. 1986; Zinoni et al. 1986; Stadtman 1987). We have demonstrated that 75Se from the labeled hydrolyzed enzyme forms the derivative' selenodicysteine. The form of selenium resulting in the synthesis of this derivative apparently is SeO inf3 sup= or a compound such as Se= which is easily oxidized to SeO inf3 sup= . In a separate approach it was established that 12–16% of the total 75Se in the native enzyme reacted with 2,3-diaminonaphthalene indicating that this fraction was present as SeO inf3 sup= . The remaining 75Se was bound to the enzyme protein. From this research, we concluded that Se in Bradyrhizobium japonicum hydrogenase is present in a labile bound form. In this respect, this enzyme is similar to xanthine dehydrogenase and nicotinic acid hydroxylase, both of which contain labile Se constituents that have not been defined.Technical paper no. 8980 from the Oregon Agricultural Experiment Station  相似文献   

2.
Summary Two strains of the soybean endosymbiont Bradyrhizobium japonicum, USDA 110 and 61 A101 C, were mutagenized with transposon Tn5. After plant infection tests of a total of 6,926 kanamycin and streptomycin resistant transconjugants, 25 mutants were identified that are defective in nodule formation (Nod-) or nitrogen fixation (Fix-). Seven Nod- mutants were isolated from strain USDA 110 and from strain 61 A101 C, 4 Nod- mutants and 14 Fix- mutants were identified. Subsequent auxotrophic tests on these symbiotically defective mutants identified 4 His- Nod- mutants of USDA 110. Genomic Southern analysis of the 25 mutants revealed that each of them carried a single copy of Tn5 integrated in the genome. Three 61 A101 C Fix- mutants were found to have vector DNA co-integrated along with Tn5 in the genome. Two independent DNA regions flanking Tn5 were cloned from the three nonauxotrophic Nod- mutants and one His-Nod- mutant of USDA 110. Homogenotization of the cloned fragments into wild-type strain USDA 110 and subsequent nodulation assay of the resulting homogenotes confirmed that the Tn5 insertion was responsible for the Nod- phenotype. Partial EcoR1 restriction enzyme maps around the Tn5 insertion sites were generated. Hybridization of these cloned regions to the previously cloned nod regions of R. meliloti and nif and nod regions of B. japonicum USDA 110 showed no homology, suggesting that these regions represent new symbiotic clusters of B. japonicum.  相似文献   

3.
Four local rhizobia isolates selected after two screening experiments and five USDA Bradyrhizobium japonicum strains were estimated for N2 fixation in soybean using the 15N isotope dilution technique. Strain USDA 110 was superior to the local isolates in nodulation and N2 fixation when inoculated onto soybean cv TGX 1497-ID in a Nigerian soil and could therefore be used as an inoculant for enhanced N2 fixation in soybean in Nigeria.  相似文献   

4.
Four histidine auxotrophs of Bradyrhizobium japonicum strain USDA 122 were isolated by random transposon Tn5 mutagenesis. These mutants arose from different, single transposition events as shown by the comparison of EcoRI and XhoI-generated Tn5 flanking sequences of genomic DNA. The mutants grew on minimal medium supplemented with l-histidine or l-histidinol but failed to grow with l-histidinol phosphate. While two of the muants were symbiotically defective and did not form nodules on Glycine max cvs. Lee and Peking and on Glycine soja, the other two mutants were symbiotically competent. Reversion to prototrophy occurred at a frequency of about 10-7 on growth medium without added antibiotics, but prototrophs could not be isolated from growth medium containing 200 g/ml kanamycin and streptomycin. The prototrophic revertants formed nodules on all the soybean cultivars examined. When histidine was supplied to the plant growth medium, both nodulation deficient mutants formed effective symbioses. On histidine unamended plants, nodules were observed infrequently. Three classes of bacterial colonies were isolated from such infrequent nodules: class 1 were kanamycin resistant-auxotrophs; class 2 were kanamycin sensitive-prototrophs; and class 3 were kanamycin-sensitive auxotrophs. Our results suggest that two Tn5 insertion mutations in B. japonicum leading to histidine auxotrophy, affect nodulation in some way. These mutations are in regions that show no homology to the Rhizobium meliloti common nodulation genes.  相似文献   

5.
The genome of the slow-growing Bradyrhizobium japonicum (strain 110) was mutagenized with transposon Tn5. A total of 1623 kanamycin/streptomycin resistant derivatives were screened in soybean infection tests for nodulation (Nod) and symbiotic nitrogen fixation (Fix). In this report we describe 14 strains possessing a stable, reproducible Nod+Fix- phenotype. These strains were also grown under microaerobic culture conditions to test them for free-living nitrogen fixation activity (Nif). In addition to strains having reduced Fix and Nif activities, there were also strains that had reduced symbiotic Fix activity but were Nif+ ex planta.Analysis of the genomic structure revealed that the majority of the strains had a single Tn5 insertion without any further apparent physical alteration. A few strains had additional insertions (by Tn5 or IS50), or a deletion, or had cointegrated part of the vector used for Tn5 mutagenesis. One of the insertions was found in a known nif gene (nifD) whereas all other mutations seem to affect different, hitherto unknown genes or operons.Several mutant strains had an altered nodulation phenotype, inducing numerous, small, widely distributed nodules. Light and electron microscopy revealed that most of these mutants were defective in different stages of bacteroid development and/or bacteroid persistence. The protein patterns of the mutants were inspected by two-dimensional gel electrophoresis after labelling microaerobic cultures with l-(35S)methionine. Of particular interest were mutants lacking a group of proteins the synthesis of which was known to be under oxygen control. Such strains can be regarded as potential regulatory mutants.  相似文献   

6.
7.
The objective of this study was to identify the sites of H-ion exudation and Fe(III) reduction along both inoculated and non-inoculated roots of A7 and T203 soybeans. A split-root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Expectedly, the Fe-stress response was strong on both sides of the split-root system in the +N-Fe treatment of variety A7 (inactive nodules) but not of variety T203. The Fe-stress response of A7 was enhanced by the presence of active nodules. Variety T203 is Fe inefficient and normally fails to produce any Fe-stress response, but in the absence of nitrogen and iron (–N–Fe), inoculated roots responded to Fe stress with exudation of both H-ions and reductants. Intact split-root systems were embedded in agar to determine the location of H-ion exudation and Fe(III) reduction. On the inoculated side of the –N–Fe and –N+Fe treatments (active nodules) of both soybean varieties, H-ion production was associated mainly with the active nodules. However, quantities of H-ion release were much greater under Fe stress (–N–Fe) than with adequate Fe (–N+Fe). Reduction of Fe(III) to Fe(II) was found only on the nodulated side with T203, but on both sides with A7. In variety T203 the Fe reduction was associated with younger roots located just below the nodule clusters on the inoculated side of the –N treatments. Active nodules appear to play a key role in the Fe-deficiency stress response of T203 soybean.  相似文献   

8.
Bradyrhizobium japonicum 532C nodulates soybean effectively under cool Canadian spring conditions and is used in Canadian commercial inoculants. The major lipo-chitooligosaccharide (LCO), bacteria-to-plant signal was characterized by HPLC, FAB-mass spectroscopy MALDI-TOF mass spectroscopy and revealed to be LCO Nod Bj-V (C18:1, MeFuc). This LCO is produced by type I strains of B. japonicum and is therefore unlikely to account for this strains superior ability to nodulate soybean under Canadian conditions. We also found that use of yeast extract mannitol medium gave similar results to that of Bergerson minimal medium.  相似文献   

9.
The nosRZDFYLX gene cluster for the respiratory nitrous oxide reductase from Bradyrhizobium japonicum strain USDA110 has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ, the structural gene, nosD, nosF, nosY, nosL, and nosX were detected. The deduced amino acid sequence exhibited a high degree of similarity to other nitrous oxide reductases from various sources. The NosZ protein included a signal peptide for protein export. Mutant strains carrying either a nosZ or a nosR mutation accumulated nitrous oxide when cultured microaerobically in the presence of nitrate. Maximal expression of a P nosZ-lacZ fusion in strain USDA110 required simultaneously both low level oxygen conditions and the presence of nitrate. Microaerobic activation of the fusion required FixLJ and FixK(2).  相似文献   

10.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):231-236
In the soybean-B. japonicum symbiosis, genistein has been identified as one of the major compounds in soybean seed and root exudates responsible for inducing expression of the B. japonicum nodYABC operon. In this study, we have tested the possibility that genistein treatment prior to inoculation can increase the competitiveness of the treated B. japonicum strain under both greenhouse and field conditions. Two mutants of the two B. japonicum strains each with a different antibiotic resistant marker were selected. They were tested with one or the other treated with genistein. The results showed genistein treated mutants had higher levels of nodule occupancy than the untreated mutant or parent strain under greenhouse conditions. Mutants from 532C had higher nodule occupancies than mutants from USDA110, especially at 15 °C. In the more complex field environment, genistein treated mutants formed fewer nodules than the untreated mutants. The contradictory results of strain competitiveness for greenhouse and field experiments are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.  相似文献   

13.
Chuiko  N. V.  Kurdish  I. K. 《Microbiology》2004,73(3):305-307
The natural argillaceous minerals montmorillonite and palygorskite were found to enhance the motility of Bradyrhizobium japonicum cells and to slow down their chemotactic motion to glucose. The latter effect of the minerals is probably due to the adsorption of mineral particles on the cell surface and the blockade of the receptors that are responsible for the chemotactic behavior of the bacterium.  相似文献   

14.
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation.  相似文献   

15.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

16.
Summary The nucleotide sequences of genes homologous to the Klebsiella pneumoniae nifEN genes have been determined in Bradyrhizobium japonicum 110. The coding regions for the nifE and nifN consist, respectively, of 1641 and 1407 nucleotides. The nifD gene (coding for the -subunit of dinitrogenase) and nifE are linked, and separated by 95 nucleotides. In the region of 12 nucleotides that separates nifE from nifN the stop codon for nifE overlaps the putative ribosome binding site for nifN. In contrast to Klebsiella and Azotobacter vinelandii, the B. japonicum nifEN genes are linked to the nifDK genes in the same operon. Comparison of dinitrogenase polypeptides (nifDK products) and the polypeptides of the nifE and nifN genes reveals considerable homology between nifD and nifE, and between nifK and nifN. Several protein domains, containing highly conserved cysteine residues, are conserved among the gene products of nifD, nifK, nifE and nifN. This result allows us to propose a probable evolutionary pathway for the common origin of these genes.  相似文献   

17.
Genomic DNA of 13 Bradyrhizobium japonicum strains was prepared and analysed by restriction fragment length polymorphism (RFLP) with nif and nod probes, and by random amplified polymorphic DNA (RAPD) with 11 primers of arbitrary nucleotide sequence. Polymorphism was observed in both analyses. The RFLP and RAPD banding patterns of different strains were used to calculate genetic divergence and to construct phylogenetic trees, allowing studies on the relationships between the strains. RFLP with nif and nod probes permitted the separation of the strains into two divergent groups, whereas RAPD separated them into four main groups. RAPD allowed closely related strains to be distinguished.  相似文献   

18.
Bradyrhizobium japonicum possesses a mitochondria-like respiratory chain terminating with an aa 3-type cytochrome c oxidase. The gene for subunit I of this enzyme (coxA) had been identified and cloned previously via heterologous hybridization using a Paracoccus denitrificans DNA probe. In the course of these studies, another B. japonicum DNA region was discovered which apparently encoded a second terminal oxidase that was different from cytochrome aa 3 but also belonged to the superfamily of heme/copper oxidases. Nucleotide sequence analysis revealed a cluster of at least four genes, coxMNOP, organized most probably in an operon. The predicted coxM gene product shared significant similarity with subunit II of cytochrome c oxidases from other organisms: in particular, all of the proposed CuA ligands were conserved as well as three of the four acidic amino acid residues that might be involved in the binding of cytochrome c. The coxN gene encoded a polypeptide with about 40% sequence identity with subunit I representatives including the previously found CoxA protein: the six presumed histidine ligands of the prosthetic groups (two hemes and CuB) were strictly conserved. A remarkable feature of the DNA seqence was the presence of two genes, coxO and coxP, whose products were both homologous to subunit III proteins. A B.japonicum coxN mutant strain was created by marker exchange mutagenesis which, however, exhibited no obvious defects in free-living, aerobic growth or in root nodule symbiosis with soybean. This shows that the coxMNOP genes are not essential for respiration in the N2 fixing bacteroid.Abbreviations ORF open reading frame - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine  相似文献   

19.
Nod factors (Lipo-chitooligosaccharides, or LCOs) act as bacteria-to-plant signal molecules that modulate early events of the Bradyrhizobium-soybean symbiosis. It is known that low root zone temperature inhibits the early stages of this symbiosis; however, the effect of low soil temperature on bacteria-to-plant signaling is largely uninvestigated. We evaluated the effect of low growth temperatures on the production kinetics of Nod factor (LCO) by B. japonicum. Two strains of B. japonicum, 532C and USDA110, were tested for ability to synthesize Nod Bj-V (C(18:1), MeFuc) at three growth temperatures (15, 17 and 28 degrees C). The greatest amounts of the major Nod factor, Nod Bj-V (C(18:1), MeFuc), were produced at 28 degrees C for both strains. At 17 and 15 degrees C, the Nod factor production efficiency, per cell, of B. japonicum 532C and USDA110 was markedly decreased with the lowest Nod factor concentration per cell occurring at 15 degrees C. Strain 532C was more efficient at Nod factor production per cell than strain USDA 110 at all growth temperatures. The biological activity of the extracted Nod factor was unaffected by culture temperature. This study constitutes the first demonstration of reduced Nod factor production efficiency (per cell production) under reduced temperatures, suggesting another way that lower temperatures inhibit establishment of the soybean N(2) fixing symbiosis.  相似文献   

20.
The nitrate reductase activity (NR) of selected uptake hydrogenase-positive (hup +) and uptake hydrogenase-negative (hup -) strains of Bradyrhizobium japonicum were examined both in free-living cells and in symbioses with Glycine max L. (Marr.) cv. Williams. Bacteria were cultured in a defined medium containing either 10 mM glutamate or nitrate as the sole nitrogen source. Nodules and bacteriods were isolated from plants that were only N2-dependent or grown in the presence of 2 mM KNO3. Rates of activity in nodules were determined by an in vivo assay, and those of cultured cells and bacteriods were assayed after permeabilization of the cells with alkyltrimethyl ammonium bromide. All seven strains examined expressed NR activity as free-living cells and as symbiotic forms, regardless of the hup genotype of the strain used for inoculation. Although the presence of nitrate increased nitrate reduction by cultures cells and nodules, no differences in NR activity were observed between bacteroids isolated from nodules of plants fed with nitrate or grown on N2-fixation exclusively. Cultured cells, nodules and bacteriods of strains with hup - genotype (USDA 138, L-236, 3. 15B3 and PJ17) had higher rates of NR activity than those with hup + genotype (USDA 110, USDA 122 DES and CB1003). These results suggest that NR activity is reduced in the presence of a genetic determinant associated with the hup region of B. japonicum.Abbreviations EDTA ethylene-diamine tetraacetic acid - Hup hydrogen uptake - MOPS 3-(N-morpholino)-propane sulfonic acid - NR nitrate reductase - PVP polyvinyl-polypyrrolidone - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号