首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants of the Thermoascus aurantiacus Eg1 enzyme with higher catalytic efficiency than wild-type were obtained via site-directed mutagenesis. Using a rational mutagenesis approach based on structural bioinformatics and evolutionary analysis, two positions (F16S and Y95F) were identified as priority sites for mutagenesis. The mutant and parent enzymes were expressed and secreted from Pichia pastoris and the single site mutants F16S and Y95F showed 1.7- and 4.0-fold increases in k(cat) and 1.5- and 2.5-fold improvements in hydrolytic activity on cellulosic substrates, respectively, while maintaining thermostability. Similar to the parent enzyme, the two variants were active between pH 4.0 and 8.0 and showed optimal activity at temperature 70°C at pH 5.0. The purified enzymes were active at 50°C for over 12 h and retained at least 80% of initial activity for 2 h at 70°C. In contrast to the improved hydrolysis seen with the single mutation enzymes, no improvement was observed with a third variant carrying a combination of both mutations, which instead showed a 60% reduction in catalytic efficiency. This work further demonstrates that non-catalytic amino acid residues can be engineered to enhance catalytic efficiency in pretreatment enzymes of interest.  相似文献   

2.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   

3.
Conformational stability of the p53 protein is an absolute necessity for its physiological function as a tumor suppressor. Recent in vitro studies have shown that wild-type p53 is a highly temperature-sensitive protein at the structural and functional levels. Upon heat treatment at 37 degrees C, p53 loses its wild-type (PAb1620(+)) conformation and its ability to bind DNA, but can be stabilized by different classes of ligands. To further investigate the thermal instability of p53, we isolated p53 mutants resistant to heat denaturation. For this purpose, we applied a recently developed random mutagenesis technique called DNA shuffling and screened for p53 variants that could retain reactivity to the native conformation-specific anti-p53 antibody PAb1620 upon thermal treatment. After three rounds of mutagenesis and screening, mutants were isolated with the desired phenotype. The isolated mutants were translated in vitro in either Escherichia coli or rabbit reticulocyte lysate and characterized biochemically. Mutational analysis identified 20 amino acid residues in the core domain of p53 (amino acids 101-120) responsible for the thermostable phenotype. Furthermore, the thermostable mutants could partially protect the PAb1620(+) conformation of tumor-derived p53 mutants from thermal unfolding, providing a novel approach for restoration of wild-type structure and possibly function to a subset of p53 mutants in tumor cells.  相似文献   

4.
Asparagine deamidation is one of the important determinants of protein thermostability. Here, structure based mutagenesis has been done in order to probe the role of Asn residues in thermostability of a Ca independent Bacillus sp. KR-8104 α-amylase (BKA). Residues involved in potential deamidation processes have been selected and replaced using a site directed mutagenesis. Fourteen different variants were tested for thermostability by measuring residual activities after incubation at high temperature. In comparison to the wild-type enzyme, four mutated variants are able to increase the half life of the protein at high temperatures. The highest stabilization resulted from the substitution of asparatate in place of asparagine at position 112, leading to a nearly fivefold increase of the enzyme's half-life at 70°C. Also replacement of Asn129 to aspartic acid and Asn312 to serine markedly increased the half-life of the enzyme at 70°C indicating that the deamination of these residues may have a deleterious effect on BKA.  相似文献   

5.
Temperature-sensitive (ts) mutants are valuable tools to study the function of essential genes in vivo. Despite their widespread use, little is known about mechanisms responsible for the temperature-sensitive (ts) phenotype, or of the transferability of ts mutants of a specific gene between organisms. Since ts mutants are typically generated by random mutagenesis it is difficult to isolate such mutants without efficient screening procedures. We have recently shown that it is possible to obtain ts mutants at high frequency by targeted mutations at either predicted, buried residues important for protein stability or at functional, ligand binding residues. The former class of residues can be identified solely from amino acid sequence and the latter from Ala scanning mutagenesis or from a structure of the protein:ligand complex. Several ts mutants of Gal4 in yeast were generated by mutating both categories of residues. Two of these ts mutants were also shown to result in tight and rapid ts reporter gene-expression in Drosophila when driven by either the elav or GMR promoters. We suggest possible mechanisms that might be responsible for such transferable ts phenotypes and also discuss some of the limitations and difficulties involved in rational design of ts mutants.  相似文献   

6.
《Fly》2013,7(5):282-286
Temperature-sensitive (ts) mutants are valuable tools to study the function of essential genes in vivo. Despite their widespread use, little is known about mechanisms responsible for the temperature-sensitive (ts) phenotype, or of the transferability of ts mutants of a specific gene between organisms. Since ts mutants are typically generated by random mutagenesis it is difficult to isolate such mutants without efficient screening procedures. We have recently shown that it is possible to obtain ts mutants at high frequency by targeted mutations at either predicted, buried residues important for protein stability or at functional, ligand binding residues. The former class of residues can be identified solely from amino acid sequence and the latter from Ala scanning mutagenesis or from a structure of the protein:ligand complex. Several ts mutants of Gal4 in yeast were generated by mutating both categories of residues. Two of these ts mutants were also shown to result in tight and rapid ts reporter gene-expression in Drosophila when driven by either the elav or GMR promoters. We suggest possible mechanisms that might be responsible for such transferable ts phenotypes and also discuss some of the limitations and difficulties involved in rational design of ts mutants.  相似文献   

7.
The relative specificity and bond cleavage pattern of barley alpha-amylase 1 (AMY1) were dramatically changed by mutation in F(286)VD that connected beta-strand 7 of the catalytic (beta/alpha)(8)-barrel to a succeeding 3(10)-helix. This conserved tripeptide of the otherwise variable beta --> alpha segment 7 lacked direct ligand contact, but the nearby residues His290 and Asp291 participated in transition-state stabilization and catalysis. On the basis of sequences of glycoside hydrolase family 13, a biased random mutagenesis protocol was designed which encoded 174 putative F(286)VD variants of C95A-AMY1, chosen as the parent enzyme to avoid inactivating glutathionylation by the yeast host. The FVG, FGG, YVD, LLD, and FLE mutants showed 12-380 and 1.8-33% catalytic efficiency (k(cat)/K(m)) toward 2-chloro-4-nitrophenyl beta-D-maltoheptaoside and amylose DP17, respectively, and 0.5-50% activity for insoluble starch compared to that of C95A-AMY1. K(m) and k(cat) were decreased 2-9- and 1.3-83-fold, respectively, for the soluble substrates. The starch:oligosaccharide and amylose:oligosaccharide specificity ratios were 13-172 and 2.4-14 for mutants and 520 and 27 for C95A-AMY1, respectively. The FVG mutant released 4-nitrophenyl alpha-D-maltotrioside (PNPG(3)) from PNPG(5), whereas C95A-AMY1 produced PNPG and PNPG(2). The mutation thus favored interaction with the substrate aglycon part, while products from PNPG(6) reflected the fact that the mutation restored binding at subsite -6 which was lost in C95A-AMY1. The outcome of this combined irrational and rational protein engineering approach was evaluated considering structural accommodation of mutant side chains. FVG and FGG, present in the most active variants, represented novel sequences. This emphasized the worth of random mutagenesis and launched flexibility as a goal for beta --> alpha loop 7 engineering in family 13.  相似文献   

8.
Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from α-d-glucose 1-phosphate as donor with glucose and cellobiose as acceptor, respectively. Use of α-d-glucosyl 1-fluoride as donor increased product yields to 98% for CtCBP and 68% for CtCDP. CtCBP showed broad acceptor specificity forming β-glucosyl disaccharides with β-(1→4)- regioselectivity from five monosaccharides as well as branched β-glucosyl trisaccharides with β-(1→4)-regioselectivity from three (1→6)-linked disaccharides. CtCDP showed strict β-(1→4)-regioselectivity and catalysed linear chain extension of the three β-linked glucosyl disaccharides, cellobiose, sophorose, and laminaribiose, whereas 12 tested monosaccharides were not acceptors. Structure analysis by NMR and ESI-MS confirmed two β-glucosyl oligosaccharide product series to represent novel compounds, i.e. β-d-glucopyranosyl-[(1→4)-β-d-glucopyranosyl]n-(1→2)-d-glucopyranose, and β-d-glucopyranosyl-[(1→4)-β-d-glucopyranosyl]n-(1→3)-d-glucopyranose (n = 1–7). Multiple sequence alignment together with a modelled CtCBP structure, obtained using the crystal structure of Cellvibrio gilvus CBP in complex with glucose as a template, indicated differences in the subsite +1 region that elicit the distinct acceptor specificities of CtCBP and CtCDP. Thus Glu636 of CtCBP recognized the C1 hydroxyl of β-glucose at subsite +1, while in CtCDP the presence of Ala800 conferred more space, which allowed accommodation of C1 substituted disaccharide acceptors at the corresponding subsites +1 and +2. Furthermore, CtCBP has a short Glu496-Thr500 loop that permitted the C6 hydroxyl of glucose at subsite +1 to be exposed to solvent, whereas the corresponding longer loop Thr637–Lys648 in CtCDP blocks binding of C6-linked disaccharides as acceptors at subsite +1. High yields in chemoenzymatic synthesis, a novel regioselectivity, and novel oligosaccharides including products of CtCDP catalysed oligosaccharide oligomerisation using α-d-glucosyl 1-fluoride, all together contribute to the formation of an excellent basis for rational engineering of CBP and CDP to produce desired oligosaccharides.  相似文献   

9.
10.
M Strauss  C H Streuli  B E Griffin 《Gene》1986,49(3):331-340
We have used oligodeoxyribonucleotide-directed deletion mutagenesis to remove early region introns from polyoma virus mutants. To this end we compared single priming, double priming, and gapped duplex approaches using either priming at 37 degrees C or at the critical temperature. The gapped duplex approach, coupled with priming at the critical temperature, resulted in up to 70% yield of the desired product. In conjunction with the use of the pEMBL vector system this method was simplified to yield specific deletions from cloned large DNA fragments with high efficiency. The resulting mutant plasmids could be used directly for biological assays without retransformation or recloning. RNA and protein analyses showed that removal of the large T- or middle T-antigen introns from polyoma early region mutants dl23 and dl8 was specific and resulted in DNA competent for the synthesis of only one T antigen.  相似文献   

11.
asCP, the unique green fluorescent protein-like nonfluorescent chromoprotein from the sea anemone Anemonia sulcata, becomes fluorescent ("kindles") upon green light irradiation, with maximum emission at 595 nm. The kindled protein then relaxes to a nonfluorescent state or can be "quenched" instantly by blue light irradiation. In this work, we used asCP mutants to investigate the mechanism underlying kindling. Using site-directed mutagenesis we showed that amino acids spatially surrounding Tyr(66) in the chromophore are crucial for kindling. We propose a model of the kindling mechanism, in which the key event is chromophore turning or cis-trans isomerization. Using site-directed mutagenesis we also managed to transfer the kindling property to the two other coral chromoproteins. Remarkably, most kindling mutants were capable of both reversible and irreversible kindling. Also, we obtained novel variants that kindled upon blue light irradiation. The diversity of photoactivated fluorescent proteins that can be developed by site-directed mutagenesis is promising for biotechnological needs.  相似文献   

12.
Model-free approaches (random mutagenesis, DNA shuffling) in combination with more "rational," three-dimensional information-guided randomization have been used for directed evolution of lysozyme activity in a defective T4 lysozyme mutant. A specialized lysozyme cloning vector phage, derived from phage lambda, depends upon T4 lysozyme function for its ability to form plaques. The substitution W138P in T4 lysozyme totally abolishes its plaque-forming ability. Compensating mutations in W138P T4 lysozyme after sequential random mutagenesis of the whole gene as well as after targeted randomization of residues in the vicinity of Trp138 were selected. In a second stage, these mutations were randomly recombined by the recombinatorial PCR method of DNA shuffling. Shuffled and selected W138P T4 lysozyme variants provide the hybrid lambda phage with sufficient lysozyme activity to produce normal-size plaques, even at elevated temperature (42 degrees C). The individual mutations with the highest compensatory information for W138P repair are the substitutions A146F and A146M, selected after targeted randomization of three residues in the neighborhood of Trp138 by combinatorial mutagenesis. The best evolved W138P T4 lysozymes, however, accumulated mutations originating from both randomly mutagenized as well as target-randomized variants.  相似文献   

13.
14.
The functional residues of z-class glutathione S-transferase were identified by screening inactive point mutants from a random mutagenesis library. First, a random mutant library was constructed using error-prone polymerase chain reaction, and then candidate inactive mutants were screened by a high-throughput colorimetric assay. Twenty-five mutants were obtained, and 12 that formed inclusion bodies were discarded. The remaining 13 mutants that expressed soluble protein were used for accurate quantification of enzymatic activity and sequencing. The mutants W15R, C19Y, R22H/K83E, P61S, S73P, S109P, and Q112R were found to have activity lower than 1% of the wild-type and were considered as “inactive mutants”, whereas the mutants K83E, Q102R, and L147F still have a large fraction of the activity and were thus considered as “partially inactivated mutants”. Molecular modeling experiments disclosed that mutations resulting in inactivation of the enzyme were found in or near the binding pocket, whereas mutations resulting in partial inactivation were distant from both substrates. The role of the residue Ser73 in the enzyme was verified by site-directed mutagenesis. The result suggested that screening inactive point mutants from a random mutagenesis library is an efficient way of identifying functional residues in enzymes.  相似文献   

15.
Site-directed mutagenesis followed by functional characterization is a widely used approach to obtain information on the structure-function relationship of proteins. Due to time and cost considerations, the number of amino acids studied is frequently reduced. To address the need for convenient parallel production of numerous point mutants of a protein, we developed an automated method to perform classical site-directed mutagenesis, protein purification, and characterization in a high-throughput manner. The process consists of a succession of six fully automated protocols that can be adapted to any automated liquid handling systems. Our procedure allows construction, validation, and characterization of hundreds of site-directed mutants of a given protein in just 4 days. The method is especially adapted to projects aiming at the study of unique or multiple mutants without the need to construct and screen large libraries of random mutants. The usefulness of the technique is illustrated by the construction and characterization of tens of single mutants of the penicillin-binding protein 2x (PBP2x) from Streptococcus pneumoniae. Moreover, seven mutations of PBP2x were obtained simultaneously in a single experiment with efficiency close to 90%.  相似文献   

16.
Microbial transglutaminase (MTG) has been used extensively in academic research and the food industries through its cross-linking or posttranslational modification of proteins. Two enzyme engineering approaches were applied to improve MTG activity. One is a novel method of rational mutagenesis, called water-accessible surface hot-space region-oriented mutagenesis (WASH-ROM). One hundred and fifty-one point mutations were selected at 40 residues, bearing high solvent-accessibility surface area, within a 15?Å space from the active site Cys64. Among them, 32 mutants showed higher specific activity than the wild type. The other is a random mutagenesis of the whole region of the MTG gene, coupled with a new plate assay screening system, using Corynebacterium Expression System CORYNEX®. This in vivo system allowed us to readily distinguish the change in enzymatic activity by monitoring the intensity of enzymatic reaction-derived color zones surrounding recombinant cells. From the library of 24,000 mutants, ten were finally selected as beneficial mutants exhibiting higher specific activity than the wild type. Furthermore, we found that Ser199Ala mutant with additional N-terminal tetrapeptide showed the highest specific activity (1.7 times higher than the wild type). These various beneficial positions leading to increased specific activity of MTG were identified to achieve further enzyme improvements.  相似文献   

17.
D K Dube  L A Loeb 《Biochemistry》1989,28(14):5703-5707
We have remodeled the gene coding for beta-lactamase by replacing DNA at the active site with random nucleotide sequences. The oligonucleotide replacement (Phe66XXXSer70XXLys73) preserves the codon for the active serine-70 but also contains 15 base pairs of chemically synthesized random sequences that code for 2.5 x 10(6) amino acid substitutions. From a population of Escherichia coli infected with plasmids containing these random inserts, we have selected seven new active-site mutants that render E. coli resistant to carbenicillin and a series of related analogues. Each of the new mutants contains multiple nucleotide substitutions that code for different amino acids surrounding serine-70. Each of the mutants exhibits a temperature-sensitive beta-lactamase activity. This technique offers the possibility of constructing alternative active sites in enzymes on the basis of biological selection for functional variants.  相似文献   

18.
In vitro evolution methods are now being routinely used to identify protein variants with novel and enhanced properties that are difficult to achieve using rational design. However, one of the limitations is in screening for beneficial mutants through several generations due to the occurrence of neutral/negative mutations occurring in the background of positive ones. While evolving a lipase in vitro from mesophilic Bacillus subtilis to generate thermostable variants, we have designed protocols that combine stringent three-tier testing, sequencing and stability assessments on the protein at the end of each generation. This strategy resulted in a total of six stabilizing mutations in just two generations with three mutations per generation. Each of the six mutants when evaluated individually contributed additively to thermostability. A combination of all of them resulted in the best variant that shows a remarkable 15 °C shift in melting temperature and a millionfold decrease in the thermal inactivation rate with only a marginal increase of 3 kcal mol−1 in free energy of stabilization. Notably, in addition to the dramatic shift in optimum temperature by 20 °C, the activity has increased two- to fivefold in the temperature range 25-65 °C. High-resolution crystal structures of three of the mutants, each with 5° increments in melting temperature, reveal the structural basis of these mutations in attaining higher thermostability. The structures highlight the importance of water-mediated ionic networks on the protein surface in imparting thermostability. Saturation mutagenesis at each of the six positions did not result in enhanced thermostability in almost all the cases, confirming the crucial role played by each mutation as revealed through the structural study. Overall, our study presents an efficient strategy that can be employed in directed evolution approaches employed for obtaining improved properties of proteins.  相似文献   

19.
Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.  相似文献   

20.
Directed evolution is a powerful approach to study the molecular basis of protein evolution and to engineer proteins for a wide range of applications in synthetic organic chemistry and biotechnology. There are many methods based on random or focused mutagenesis to engineer successfully any protein trait. Focused approaches such as site-directed and saturation mutagenesis have become methods of choice for improving protein activity, selectivity, stability and many other traits because the screening step can be practically handled (bottleneck in directed evolution). Although novel mutagenesis methods based on CRISPR or solid-phase gene synthesis can eliminate bias when creating protein libraries, traditional PCR approaches, although imperfect, remain widely used due to their ease and low cost. One of the most common approaches in focused mutagenesis relies on NNK mutagenesis, however, the primer-based 22c-trick and small-intelligent methods have emerged as key tools for constructing less biased and unbiased libraries when all 20 canonical amino acids are needed for various reasons. In this minireview, we assess studies employing such methods for library creation and their areas of application. We also discuss the advantages and disadvantages of both methods and provide a perspective for creating smarter libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号