首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Starting in June 2010 the Infectious Diseases Institute (IDI) clinic (a large urban HIV out-patient facility) switched to provider-based Electronic Medical Records (EMR) from paper EMR entered in the database by data-entry clerks. Standardized clinics forms were eliminated but providers still fill free text clinical notes in physical patients’ files. The objective of this study was to compare the rate of errors in the database before and after the introduction of the provider-based EMR.

Methods and Findings

Data in the database pre and post provider-based EMR was compared with the information in the patients’ files and classified as correct, incorrect, and missing. We calculated the proportion of incorrect, missing and total error for key variables (toxicities, opportunistic infections, reasons for treatment change and interruption). Proportions of total errors were compared using chi-square test. A survey of the users of the EMR was also conducted. We compared data from 2,382 visits (from 100 individuals) of a retrospective validation conducted in 2007 with 34,957 visits (from 10,920 individuals) of a prospective validation conducted in April–August 2011. The total proportion of errors decreased from 66.5% in 2007 to 2.1% in 2011 for opportunistic infections, from 51.9% to 3.5% for ART toxicity, from 82.8% to 12.5% for reasons for ART interruption and from 94.1% to 0.9% for reasons for ART switch (all P<0.0001). The survey showed that 83% of the providers agreed that provider-based EMR led to improvement of clinical care, 80% reported improved access to patients’ records, and 80% appreciated the automation of providers’ tasks.

Conclusions

The introduction of provider-based EMR improved the quality of data collected with a significant reduction in missing and incorrect information. The majority of providers and clients expressed satisfaction with the new system. We recommend the use of provider-based EMR in large HIV programs in Sub-Saharan Africa.  相似文献   

2.
This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis.  相似文献   

3.
Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.  相似文献   

4.
基因逻辑网络研究进展   总被引:1,自引:0,他引:1  
海量生物数据的涌现,使得通过数据分析和理论方法探索生物机理成为理论生物学研究的重要途径.特别是对于基因的复杂的功能系统,建立基因网络这种理论方法的意义更为突出.Bowers在蛋白质相互作用的分析中引入了高阶逻辑关系,从而建立了系统发生谱数据的逻辑分析(LAPP)的系统方法.LAPP和通常建立模型的方法不同,它给出了一个从复杂网络的元素(或部件)的表达数据出发,通过逻辑分析,找到元素之间逻辑关联性的建模方法.这种方法能够从蛋白质表达谱数据出发,利用信息熵的算法发现两种蛋白质对一种蛋白质的联合作用,对于发现蛋白质之间新的作用机理有重要意义.由于涉及功能的基因组通常是一个大的群体构成的系统,因此LAPP方法也是一个生成复杂的基因逻辑网络的方法.基因逻辑网络的建立,方便实现通过逻辑调控进行基因调控的目的.这种方法可以应用在很多方面,如物种进化、肿瘤诊疗等等.系统阐述并分析了LAPP方法,并指出其在方法和应用方面的新进展以及评述.  相似文献   

5.
The current sensor networks are assumed to be designed for specific applications, having data communication protocols strongly coupled to applications. The future sensor networks are envisioned as comprising heterogeneous devices assisting to a large range of applications. To achieve this goal, a new architecture approach is needed, having application specific features separated from the data communication protocol, while influencing its behavior. We propose a Web Services approach for the design of sensor network, in which sensor nodes are service providers and applications are clients of such services. Our main goal is to enable a flexible architecture in which sensor networks data can be accessed by users spread all over the world.  相似文献   

6.
Decision-making about pandemic mitigation often relies upon simulation modelling. Models of disease transmission through networks of contacts–between individuals or between population centres–are increasingly used for these purposes. Real-world contact networks are rich in structural features that influence infection transmission, such as tightly-knit local communities that are weakly connected to one another. In this paper, we propose a new flow-based edge-betweenness centrality method for detecting bottleneck edges that connect nodes in contact networks. In particular, we utilize convex optimization formulations based on the idea of diffusion with p-norm network flow. Using simulation models of COVID-19 transmission through real network data at both individual and county levels, we demonstrate that targeting bottleneck edges identified by the proposed method reduces the number of infected cases by up to 10% more than state-of-the-art edge-betweenness methods. Furthermore, the proposed method is orders of magnitude faster than existing methods.  相似文献   

7.
MOTIVATION: Inferring networks of proteins from biological data is a central issue of computational biology. Most network inference methods, including Bayesian networks, take unsupervised approaches in which the network is totally unknown in the beginning, and all the edges have to be predicted. A more realistic supervised framework, proposed recently, assumes that a substantial part of the network is known. We propose a new kernel-based method for supervised graph inference based on multiple types of biological datasets such as gene expression, phylogenetic profiles and amino acid sequences. Notably, our method assigns a weight to each type of dataset and thereby selects informative ones. Data selection is useful for reducing data collection costs. For example, when a similar network inference problem must be solved for other organisms, the dataset excluded by our algorithm need not be collected. RESULTS: First, we formulate supervised network inference as a kernel matrix completion problem, where the inference of edges boils down to estimation of missing entries of a kernel matrix. Then, an expectation-maximization algorithm is proposed to simultaneously infer the missing entries of the kernel matrix and the weights of multiple datasets. By introducing the weights, we can integrate multiple datasets selectively and thereby exclude irrelevant and noisy datasets. Our approach is favorably tested in two biological networks: a metabolic network and a protein interaction network. AVAILABILITY: Software is available on request.  相似文献   

8.
Biological networks, such as genetic regulatory networks and protein interaction networks, provide important information for studying gene/protein activities. In this paper, we propose a new method, NetBoosting, for incorporating a priori biological network information in analyzing high dimensional genomics data. Specially, we are interested in constructing prediction models for disease phenotypes of interest based on genomics data, and at the same time identifying disease susceptible genes. We employ the gradient descent boosting procedure to build an additive tree model and propose a new algorithm to utilize the network structure in fitting small tree weak learners. We illustrate by simulation studies and a real data example that, by making use of the network information, NetBoosting outperforms a few existing methods in terms of accuracy of prediction and variable selection.  相似文献   

9.
MOTIVATION: Bayesian network methods have shown promise in gene regulatory network reconstruction because of their capability of capturing causal relationships between genes and handling data with noises found in biological experiments. The problem of learning network structures, however, is NP hard. Consequently, heuristic methods such as hill climbing are used for structure learning. For networks of a moderate size, hill climbing methods are not computationally efficient. Furthermore, relatively low accuracy of the learned structures may be observed. The purpose of this article is to present a novel structure learning method for gene network discovery. RESULTS: In this paper, we present a novel structure learning method to reconstruct the underlying gene networks from the observational gene expression data. Unlike hill climbing approaches, the proposed method first constructs an undirected network based on mutual information between two nodes and then splits the structure into substructures. The directional orientations for the edges that connect two nodes are then obtained by optimizing a scoring function for each substructure. Our method is evaluated using two benchmark network datasets with known structures. The results show that the proposed method can identify networks that are close to the optimal structures. It outperforms hill climbing methods in terms of both computation time and predicted structure accuracy. We also apply the method to gene expression data measured during the yeast cycle and show the effectiveness of the proposed method for network reconstruction.  相似文献   

10.
Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analyzing social networks can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximized (a) the assortment of individuals into previously known “breeding groups” (birds that contribute toward the same nest and maintain cohesion when foraging) and (b) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.  相似文献   

11.
Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.  相似文献   

12.
Ou-Yang  Le  Yan  Hong  Zhang  Xiao-Fei 《BMC bioinformatics》2017,18(13):463-34

Background

The accurate identification of protein complexes is important for the understanding of cellular organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions (DDI) has the potential to obtain better performance in protein complex detection. As traditional computational methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new algorithm that could effectively utilize the information inherent in multiple heterogeneous networks.

Results

In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms.

Conclusions

In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to improve the accuracy of protein complex detection.
  相似文献   

13.
MOTIVATION: A large amount of biomolecular network data for multiple species have been generated by high-throughput experimental techniques, including undirected and directed networks such as protein-protein interaction networks, gene regulatory networks and metabolic networks. There are many conserved functionally similar modules and pathways among multiple biomolecular networks in different species; therefore, it is important to analyze the similarity between the biomolecular networks. Network querying approaches aim at efficiently discovering the similar subnetworks among different species. However, many existing methods only partially solve this problem. RESULTS: In this article, a novel approach for network querying problem based on conditional random fields (CRFs) model is presented, which can handle both undirected and directed networks, acyclic and cyclic networks and any number of insertions/deletions. The CRF method is fast and can query pathways in a large network in seconds using a PC. To evaluate the CRF method, extensive computational experiments are conducted on the simulated and real data, and the results are compared with the existing network querying methods. All results show that the CRF method is very useful and efficient to find the conserved functionally similar modules and pathways in multiple biomolecular networks.  相似文献   

14.
Application of phylogenetic networks in evolutionary studies   总被引:42,自引:0,他引:42  
The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evolution proceeds in a tree-like manner, analysis of the data may not be best served by using methods that enforce a tree structure but rather by a richer visualization of the data to evaluate its properties, at least as an essential first step. Thus, phylogenetic networks should be employed when reticulate events such as hybridization, horizontal gene transfer, recombination, or gene duplication and loss are believed to be involved, and, even in the absence of such events, phylogenetic networks have a useful role to play. This article reviews the terminology used for phylogenetic networks and covers both split networks and reticulate networks, how they are defined, and how they can be interpreted. Additionally, the article outlines the beginnings of a comprehensive statistical framework for applying split network methods. We show how split networks can represent confidence sets of trees and introduce a conservative statistical test for whether the conflicting signal in a network is treelike. Finally, this article describes a new program, SplitsTree4, an interactive and comprehensive tool for inferring different types of phylogenetic networks from sequences, distances, and trees.  相似文献   

15.

Background

The skeleton of complex systems can be represented as networks where vertices represent entities, and edges represent the relations between these entities. Often it is impossible, or expensive, to determine the network structure by experimental validation of the binary interactions between every vertex pair. It is usually more practical to infer the network from surrogate observations. Network inference is the process by which an underlying network of relations between entities is determined from indirect evidence. While many algorithms have been developed to infer networks from quantitative data, less attention has been paid to methods which infer networks from repeated co-occurrence of entities in related sets. This type of data is ubiquitous in the field of systems biology and in other areas of complex systems research. Hence, such methods would be of great utility and value.

Results

Here we present a general method for network inference from repeated observations of sets of related entities. Given experimental observations of such sets, we infer the underlying network connecting these entities by generating an ensemble of networks consistent with the data. The frequency of occurrence of a given link throughout this ensemble is interpreted as the probability that the link is present in the underlying real network conditioned on the data. Exponential random graphs are used to generate and sample the ensemble of consistent networks, and we take an algorithmic approach to numerically execute the inference method. The effectiveness of the method is demonstrated on synthetic data before employing this inference approach to problems in systems biology and systems pharmacology, as well as to construct a co-authorship collaboration network. We predict direct protein-protein interactions from high-throughput mass-spectrometry proteomics, integrate data from Chip-seq and loss-of-function/gain-of-function followed by expression data to infer a network of associations between pluripotency regulators, extract a network that connects 53 cancer drugs to each other and to 34 severe adverse events by mining the FDA’s Adverse Events Reporting Systems (AERS), and construct a co-authorship network that connects Mount Sinai School of Medicine investigators. The predicted networks and online software to create networks from entity-set libraries are provided online at http://www.maayanlab.net/S2N.

Conclusions

The network inference method presented here can be applied to resolve different types of networks in current systems biology and systems pharmacology as well as in other fields of research.  相似文献   

16.
The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems.  相似文献   

17.
Does each cognitive task elicit a new cognitive network each time in the brain? Recent data suggest that pre-existing repertoires of a much smaller number of canonical network components are selectively and dynamically used to compute new cognitive tasks. To this end, we propose a novel method (graph-ICA) that seeks to extract these canonical network components from a limited number of resting state spontaneous networks. Graph-ICA decomposes a weighted mixture of source edge-sharing subnetworks with different weighted edges by applying an independent component analysis on cross-sectional brain networks represented as graphs. We evaluated the plausibility in our simulation study and identified 49 intrinsic subnetworks by applying it in the resting state fMRI data. Using the derived subnetwork repertories, we decomposed brain networks during specific tasks including motor activity, working memory exercises, and verb generation, and identified subnetworks associated with performance on these tasks. We also analyzed sex differences in utilization of subnetworks, which was useful in characterizing group networks. These results suggest that this method can effectively be utilized to identify task-specific as well as sex-specific functional subnetworks. Moreover, graph-ICA can provide more direct information on the edge weights among brain regions working together as a network, which cannot be directly obtained through voxel-level spatial ICA.  相似文献   

18.
Large-scale microarray gene expression data provide the possibility of constructing genetic networks or biological pathways. Gaussian graphical models have been suggested to provide an effective method for constructing such genetic networks. However, most of the available methods for constructing Gaussian graphs do not account for the sparsity of the networks and are computationally more demanding or infeasible, especially in the settings of high dimension and low sample size. We introduce a threshold gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a procedure is computationally feasible and can easily incorporate prior biological knowledge about the network structure. Simulation results indicate that the proposed method yields a better estimate of the precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic networks based on microarray gene expression data.  相似文献   

19.
20.
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis–Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号