首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This paper presents the results of interviews and a questionnaire study on public knowledge of the concept of biodiversity and of plant species richness in Switzerland. Despite its extensive use in science and policy making, the concept of biodiversity is not widely recognized or known to people in Switzerland. Overall, 60% of all study participants (161 grammar school pupils, 110 non-graduates, and 96 graduates in the Canton of Zurich) had never heard the term biodiversity, while the others had come across it primarily in the media. Few study participants considered their school education a relevant source of information about biodiversity. Study participants most frequently referred to the diversity of plants and animals when defining biodiversity, but also quite often believed that biodiversity had something to do with ecological concepts such as the equilibrium between all components of nature. Both young people and adults held widely inaccurate ideas of the plant species richness of communities. Particularly for Switzerland, plant species richness was strongly overestimated.
Petra Lindemann-MatthiesEmail:
  相似文献   

4.
5.
Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.Contribution Number 2293, Bodega Marine Laboratory, University of California at Davis.  相似文献   

6.
7.
Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the participation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently inhibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility as well as renal sodium excretion. The present article reviews the progress in disclosing putative ouabain-like substances, examines their denomination according to different research teams, tissue or biological fluid sources, extraction and purification, assays, biological properties and chemical and biophysical features. When data is available, comparison with ouabain itself is mentioned. Likewise, their potential action in normal physiology as well as in experimental and human pathology is summarized.  相似文献   

8.
9.
Why FRET about Ran?   总被引:1,自引:0,他引:1  
The Ran GTPase drives nucleocytoplasmic transport, stabilizes mitotic spindles, and catalyzes nuclear envelope formation. A unifying explanation of these functions is that RanGTP produces an organizing field or "atmosphere" around chromatin and acts as a spatial marker. This RanGTP field has now been visualized using fluorescent biosensors.  相似文献   

10.
11.
Strain typing of bacterial isolates is increasingly used to identify sources of infection or product contamination and to elucidate routes of transmission of pathogens or spoilage organisms. Usually, the number of bacterial isolates belonging to the same species that is analyzed per sample is determined by convention, convenience, laboratory capacity, or financial resources. Statistical considerations and knowledge of the heterogeneity of bacterial populations in various sources can be used to determine the number of isolates per sample that is actually needed to address specific research questions. We present data for intestinal Escherichia coli, Listeria monocytogenes, Klebsiella pneumoniae, and Streptococcus uberis from gastrointestinal, fecal, or soil samples characterized by ribotyping, pulsed-field gel electrophoresis, and PCR-based strain-typing methods. In contrast to previous studies, all calculations were performed with a single computer program, employing software that is freely available and with in-depth explanation of the choice and derivation of prior distributions. Also, some of the model assumptions were relaxed to allow analysis of the special case of two (groups of) strains that are observed with different probabilities. Sample size calculations, with a Bayesian method of inference, show that from 2 to 20 isolates per sample need to be characterized to detect all strains that are present in a sample with 95% certainty. Such high numbers of isolates per sample are rarely typed in real life due to financial or logistic constraints. This implies that investigators are not gaining maximal information on strain heterogeneity and that sources and transmission pathways may go undetected.  相似文献   

12.
13.
Why and How Do Plant Cells Sense Sugars?   总被引:12,自引:0,他引:12  
The ability to sense sugars is crucial for the modulation ofgene expression in plants. Despite the importance of this phenomenon,our knowledge of sugar sensing in plants is scant. Several valuablehypotheses have been put forward based on the extensive knowledgeof sugar sensing in yeast. In recent years, tests of these hypotheseshave shown that hexokinase and sucrose-non-fermenting- (SNF-)related proteins appear to be involved in sugar sensing andtransduction, not only in yeast but also in higher plants. However,even if plants share with yeast some elements involved in sugarsensing, several aspects of sugar perception are likely to bepeculiar to higher plants. Plants should be able to sense notonly glucose but also other hexoses, such as fructose and disaccharides(sucrose, maltose and others). In this Botanical Briefing weoutline recent discoveries in this field, with emphasis on arabidopsisand cereals. The use of transgenic plants and mutants to identifysugar sensor(s) and elements in the signalling pathways andtheir cross-talk with the hormonal signalling is discussed.Copyright2001 Annals of Botany Company Abscisic acid, Arabidopsis thaliana, cereals, hexokinase, sugar sensing  相似文献   

14.
15.
16.
There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts’ clade diversification suggests it is strongly influenced by ecological and contemporary constrains.  相似文献   

17.
18.
The secretory route in eukaryotic cells has been regarded as one common pathway from the endoplasmic reticulum (ER) through the Golgi cisternae to the trans Golgi network where recognition, sorting and exit of cargo molecules are thought to occur. Morphologically, the ribosome-coated ER is observed throughout the cytoplasm, while the Golgi apparatus usually is confined to a perinuclear position in mammalian cells. However, Golgi outposts have been observed in neuronal dendrites and dispersed Golgi elements in skeletal muscle myofibers. In insects, like in Drosophila melanogaster imaginal disc cells and epidermal cells of Tobacco and Arabidopsis leafs, individual Golgi stacks are distributed throughout the cytoplasm. Golgi stacks do not only differ in their intracellular localization but also in the number of stacks from one to several hundreds. Each stack consists of closely aligned, flattened, membrane-limited cisternae. The number of cisternae in a Golgi stack is also variable, 2-3 in some ciliates, 10 in many plant cell types and up to 30 in certain euglenoids. The yeast Saccharomyces cerevisiae has a Golgi structure of minimal complexity with scattered solitary cisternae. It is assumed that the number of Golgi cisternae reflects the overall complexity of the enzymatic reactions that occur in their lumen, while the number of stacks reflects the load of macromolecules arriving at the cis side. In this review, we will focus on how the available morphological and biochemical data fit with the current view of protein sorting in the secretory pathway, particularly in polarized cells like neuronal and epithelial cells.  相似文献   

19.
Although species play a number of unique and necessary roles in biology, none are more important than as the elements of phylogeny, nomenclature, and biodiversity study. Species are not divisible into any smaller units among which shared derived characters can be recognized with fidelity. Biodiversity inventory, assessment, and conservation are dependent upon a uniformly applicable species concept. Species are the fundamental units in formal Linnaean classification and zoological nomenclature. The Biological Species Concept, long given nominal support by most zoologists, forced an essentialy taxonomic problem (what are species?) into a population genetics framework (why are there species?). Early efforts at a phylogenetic species concept focused on correcting problems in the Biological Species Concept associated with ancestral populations, then applying phylogenetic logic to species themselves. Subsequently, Eldredge and Cracraft, and Nelson and Platnick, each proposed essentially identical and truly phylogenetic species concepts that permitted the rigorous recognition of species prior to and for the purposes of phylogenetic analysis, yet maintained the integrity of the Phylogenetic Species Concept outside of cladistic analysis. Such phylogenetic elements have many benefits, including giving to biology a unit species concept applicable across all kinds of living things including sexual and asexual forms. This is possible because the Phylogenetic Species Concept is based on patterns of character distributions and is therefore consistent with the full range of possible evolutionary processes that contribute to species formation, including both biotic and abiotic (even random) factors.  相似文献   

20.
The replicon model has initiated a major research line in molecular biology: the study of DNA replication mechanisms. Until now, the majority of studies have focused on a limited set of model organisms, mainly from Bacteria or Opisthokont eukaryotes (human, yeasts) and a few viral systems. However, molecular evolutionists have shown that the living world is more complex and diverse than believed when the operon model was proposed. Comparison of DNA replication proteins in the three domains, Archaea, Bacteria, and Eukarya, have surprisingly revealed the existence of two distinct sets of non-homologous cellular DNA replication proteins, one in Bacteria and the other in Archaea and Eukarya, suggesting that the last universal common ancestor possibly still had an RNA genome. A major puzzle is the presence in eukaryotes of the unfaithful DNA polymerase alpha (Pol α) to prime Okazaki fragments. Interestingly, Pol α is specifically involved in telomere biosynthesis, and its absence in Archaea correlates with the absence of telomeres. The recent discovery of telomere-like GC quartets in eukaryotic replication origins suggests a link between Pol α and the overall organization of the eukaryotic chromosome. As previously proposed by Takemura, Pol α might have originated from a mobile element of viral origin that played a critical role in the emergence of the complex eukaryotic genomes. Notably, most large DNA viruses encode DNA replication proteins very divergent from their cellular counterparts. The diversity of viral replication machineries compared to cellular ones suggests that DNA and DNA replication mechanisms first originated and diversified in the ancient virosphere, possibly explaining why they are so many different types of replication machinerie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号