首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD‐TDP). Recently, a genome‐wide association study identified the first FTLD‐TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD‐TDP risk. Intriguingly, the most significant association was in FTLD‐TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD‐TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B‐specific antibody for investigation of this protein. Enzyme‐linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over‐expression. However, over‐expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N‐glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD‐TDP risk.

  相似文献   


2.
TMEM106B variants are genetically associated with frontotemporal lobar degeneration with TDP‐43 pathology (FTLD‐TDP), and are considered a major risk factor for this disease. As TMEM106B may be involved in other pathologies such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), uncovering its cellular functions has become a priority. In this issue of The EMBO Journal, Schwenk et al ( 2014 ) combine loss‐of‐function experiments, live imaging and proteomics to unveil the physiological roles played by TMEM106B and its binding partner MAP6 in lysosomal function and transport.  相似文献   

3.
TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP‐43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule‐associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over‐expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant‐negative Rab7‐interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.  相似文献   

4.
The sequential processing of single pass transmembrane proteins via ectodomain shedding followed by intramembrane proteolysis is involved in a wide variety of signaling processes, as well as maintenance of membrane protein homeostasis. Here we report that the recently identified frontotemporal lobar degeneration risk factor TMEM106B undergoes regulated intramembrane proteolysis. We demonstrate that TMEM106B is readily processed to an N-terminal fragment containing the transmembrane and intracellular domains, and this processing is dependent on the activities of lysosomal proteases. The N-terminal fragment is further processed into a small, rapidly degraded intracellular domain. The GxGD aspartyl proteases SPPL2a and, to a lesser extent, SPPL2b are responsible for this intramembrane cleavage event. Additionally, the TMEM106B paralog TMEM106A is also lysosomally localized; however, it is not a specific substrate of SPPL2a or SPPL2b. Our data add to the growing list of proteins that undergo intramembrane proteolysis and may shed light on the regulation of the frontotemporal lobar degeneration risk factor TMEM106B.  相似文献   

5.
跨膜蛋白106A (transmembrane protein 106A, TMEM106A)是本中心首先鉴定的与细胞死亡相关的分子。体内外的功能研究证明,TMEM106A在胃癌细胞的高表达能够明显抑制肿瘤细胞的生长,并诱导细胞死亡。本研究利用组织芯片和免疫组化的方法,发现TMEM106A蛋白在癌旁非肿瘤组织中高表达,主要定位在胞质,而在肝癌细胞中低表达或者不表达。进一步的功能研究证明TMEM106A在肝癌细胞系HepG2中高表达能够降低细胞活力、诱导胞质空泡化以及细胞周期阻滞在G2/M期,最终细胞死亡。胞质聚集的空泡表现为单层膜,液泡内基本不含亚细胞器结构以及高电子密度的聚集物。本研究首次证明TMEM106A能够引起巨泡样细胞死亡,其作用机制需要进一步探讨。  相似文献   

6.
Tim P. Levine 《Proteins》2022,90(1):164-175
TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its overexpression being associated with familial frontotemporal lobar degeneration, and point mutation linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV-2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function. Here, the standard tool PSI-BLAST was used in a nonstandard way to show that the lumenal portion of TMEM106B is a member of the late embryogenesis abundant-2 (LEA-2) domain superfamily. More sensitive tools (HMMER, HHpred, and trRosetta) extended this to predict LEA-2 domains in two yeast proteins. One is Vac7, a regulator of PI(3,5)P2 production in the degradative vacuole, equivalent to the lysosome, which has a LEA-2 domain in its lumenal domain. The other is Tag1, another vacuolar protein, which signals to terminate autophagy and has three LEA-2 domains in its lumenal domain. Further analysis of LEA-2 structures indicated that LEA-2 domains have a long, conserved lipid-binding groove. This implies that TMEM106B, Vac7, and Tag1 may all be lipid transfer proteins in the lumen of late endocytic organelles.  相似文献   

7.
Transmembrane protein 106A (TMEM106A) has been found to function as tumor suppressor in gastric and renal cancer. However, the role of TMEM106A in nonsmall-cell lung carcinoma (NSCLC) has not been investigated. In this study, we evaluated the expression profile of TMEM106A in NSCLC tissues and cell line, and explored the roles of TMEM106A in NSCLC cell lines. Our results showed that TMEM106A expression was significantly decreased in human NSCLC tissues. In vitro assays showed that TMEM106A expression in NSCLC cell lines was much lower than that in the bronchial epithelial cell line. Besides, overexpression of TMEM106A reduced cell proliferation, migration, and invasion, while induced cell apoptosis in NSCLC cells. TMEM106A overexpression repressed epithelial-mesenchymal transition (EMT), which was illustrated by increased E-cadherin expression and decreased the expressions of N-cadherin, and vimentin. In addition, TMEM106A overexpression suppressed the activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor-κB (PI3K/Akt/NF-κB) signaling pathway in NSCLC cells. Our results indicated that TMEM106A acted as a tumor suppressor in NSCLC, and could be a therapeutic target for the management of NSCLC.  相似文献   

8.
Colorectal cancer (CRC), is mostly derived from normal colon epithelial cells, and has been reported to be one of most common gastrointestinal malignancies globally. An increasing number of researchers have claimed that long noncoding RNAs (lncRNAs) exert significant functions in tumor progression. Nevertheless, the function of MAGI2-AS3 remains uncertain in CRC. The expression of MAGI2-AS3, miR-3163, and transmembrane protein 106B (TMEM106B) messenger RNA was examined by quantitative real-time polymerase chain reaction. Cell apoptosis was measured by caspase-3 activity test. Cell proliferation was tested by cell-counting kit 8 and 5-ethynyl-2′-deoxyuridine assays. Cell migration was detected by transwell assay. Western blot analysis examined the protein expression of TMEM106B. The expression of Ki-67 was evaluated by immunohistochemistry assay. The binding capacity between miR-3163 and MAGI2-AS3 (or TMEM106B) was studied by radioimmunoprecipitation and luciferase reporter assays. The expression of MAGI2-AS3 and TMEM106B was conspicuously upregulated whereas miR-3163 presented lower expression in CRC cells. MAGI2-AS3 deficiency facilitated cell apoptosis but hampered cell proliferation and migration. MAGI2-AS3 combined with miR-3163 and negatively regulated miR-3163 expression. In addition, the administration of sh-MAGI2-AS3 or miR-3163 mimics suppressed CRC cell growth in vivo. Subsequently, miR-3163 targeted TMEM106B and the transfection of sh-MAGI2-AS3 or miR-3163 mimics downregulated TMEM106B expression. Rescue assays verified that TMEM106B overexpression recovered the effects of MAGI2-AS3 inhibition on cell apoptosis, proliferation, and migration in CRC. MAGI2-AS3 drives CRC progression through regulating miR-3163/TMEM106B axis. This supplies innovative insights on the investigation of molecular mechanism in CRC progression.  相似文献   

9.
Several protein-coding genes have been identified to play essential roles in cancer biology, and they are dysregulated in many tumors. Transmembrane protein 106C (TMEM106C) is differentially expressed in several human and porcine diseases; however, the expression and biological functions of TMEM106C in hepatocellular carcinoma (HCC) are not clear. In our study, we obtained paired tissue samples from patients undergoing resection for HCC and public databases, which were analyzed for TMEM106C expression using quantitative real-time polymerase chain reaction (qRT-PCR). We further conducted in vitro and in vivo experiments in HCC cell lines and nude mice, respectively, in which TMEM106C was overexpressed or knocked down. Cell-Counting Kit-8 and colony formation experiments were used to determine the influence of TMEM106C on cell proliferation, flow cytometric assays were used to detect the influence on cell cycle distribution and apoptosis, and transwell assays were used for detecting changes in cell migration and invasion. TMEM106C levels were significantly elevated in HCC tissues and cell lines from public databases and our collected specimens from patients. Moreover, higher TMEM106C expression levels predicted a poor prognosis in HCC patients in survival analysis. Overexpression of TMEM106C in HCC cells accelerated cell growth, migration, and invasion, but it inhibited cell apoptosis by targeting forkhead box O-1 (FOXO1) and FOXO3. Conversely, TMEM106C knockdown impeded cell proliferation and metastasis, whereas it enhanced the rate of apoptosis. More important, knockdown of the expression of TMEM106C in HCC cells inhibited the growth of xenograft tumors in vivo. Collectively, these results suggest that TMEM106C acts as an oncogene and can serve as a potential therapeutic target for HCC in the future.  相似文献   

10.
Inactivation of tumour suppressor genes by promoter methylation plays an important role in the initiation and progression of gastric cancer (GC). Transmembrane 106A gene (TMEM106A) encodes a novel protein of previously unknown function. This study analysed the biological functions, epigenetic changes and the clinical significance of TMEM106A in GC. Data from experiments indicate that TMEM106A is a type II membrane protein, which is localized to mitochondria and the plasma membrane. TMEM106A was down‐regulated or silenced by promoter region hypermethylation in GC cell lines, but expressed in normal gastric tissues. Overexpression of TMEM106A suppressed cell growth and induced apoptosis in GC cell lines, and retarded the growth of xenografts in nude mice. These effects were associated with the activation of caspase‐2, caspase‐9, and caspase‐3, cleavage of BID and inactivation of poly (ADP‐ribose) polymerase (PARP). In primary GC samples, loss or reduction of TMEM106A expression was associated with promoter region hypermethylation. TMEM106A was methylated in 88.6% (93/105) of primary GC and 18.1% (2/11) in cancer adjacent normal tissue samples. Further analysis suggested that TMEM106A methylation in primary GCs was significantly correlated with smoking and tumour metastasis. In conclusion, TMEM106A is frequently methylated in human GC. The expression of TMEM106A is regulated by promoter hypermethylation. TMEM106A is a novel functional tumour suppressor in gastric carcinogenesis.  相似文献   

11.
帕金森病(Parkinson’s disease,PD)是一种复杂的神经退行性疾病,以运动障碍和非运动症状为特征。虽然以多巴胺为基础的疗法在疾病的早期阶段能有效地对抗症状,但缺乏神经保护药物意味着疾病仍在继续发展。PD病人迫切需要新的疾病修饰疗法和新的治疗策略。遗传学研究表明,罕见和常见的基因变异都会导致PD的发生和发展。跨膜蛋白175(transmembrane protein 175,TMEM175)是来自溶酶体的PD风险基因之一,编码一种具有新型结构的溶酶体钾通道蛋白质,参与维持溶酶体膜电位和pH的稳定性。随着对TMEM175的了解,多项研究证实TMEM175的缺陷能够导致溶酶体功能障碍,诱导神经元α-突触核蛋白(α-synuclein)的病理性聚集,促进帕金森病发生。鉴于溶酶体TMEM175通道蛋白的重要功能,TMEM175基因可能是帕金森病及其他神经退行性疾病治疗的潜在靶点。本文综述了溶酶体TMEM175基因的结构及功能,重点阐述了其作为溶酶体内稳态调节因子通过影响溶酶体的功能参与PD发生发展的过程,并对其研究进行了展望。以TMEM175为靶标,筛选具有保持TMEM175的活性状态或增强其表达的药物可能具有改善PD病人病情的效果,但TMEM175如何通过保持其通道的开放和闭合状态之间的平衡来调节溶酶体的离子稳态,具体机制尚需要进一步研究探讨。未来对该离子通道蛋白质的进一步研究将为 靶向PD治疗带来新的策略和思路,为在PD的诊断与治疗中奠定TMEM175的靶标分子地位提供支持。  相似文献   

12.
Recent studies suggest progranulin (GRN) is a neurotrophic factor. Loss-of-function mutations in the progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Using an enzyme-linked immunosorbent assay, we previously showed that GRN is detectable in human plasma and can be used to predict GRN mutation status. This study also showed a wide range in plasma GRN levels in non-GRN mutation carriers, including controls. We have now performed a genome-wide association study of 313,504 single-nucleotide polymorphisms (SNPs) in 533 control samples and identified on chromosome 1p13.3 two SNPs with genome-wide significant association with plasma GRN levels (top SNP rs646776; p = 1.7 × 10−30). The association of rs646776 with plasma GRN levels was replicated in two independent series of 508 controls (p = 1.9 × 10−19) and 197 FTLD patients (p = 6.4 × 10−12). Overall, each copy of the minor C allele decreased GRN levels by ∼15%. SNP rs646776 is located near sortilin (SORT1), and the minor C allele of rs646776 was previously associated with increased SORT1 mRNA levels. Supporting these findings, overexpression of SORT1 in cultured HeLa cells dramatically reduced GRN levels in the conditioned media, whereas knockdown of SORT1 increased extracellular GRN levels. In summary, we identified significant association of a locus on chromosome 1p13.3 with plasma GRN levels through an unbiased genome-wide screening approach and implicated SORT1 as an important regulator of GRN levels. This finding opens avenues for future research into GRN biology and the pathophysiology of neurodegenerative diseases.  相似文献   

13.
14.
Recently, mutations in the progranulin (PGRN) gene were found to cause familial and apparently sporadic frontotemporal lobe dementia (FTLD). Moreover, missense changes in PGRN were identified in patients with motor neuron degeneration, a condition that is related to FTLD. Most mutations identified in patients with FTLD until now have been null mutations. However, it remains unknown whether PGRN protein levels are reduced in the central nervous system from such patients. The effects of PGRN on neurons also remain to be established. We report that PGRN levels are reduced in the cerebrospinal fluid from FTLD patients carrying a PGRN mutation. We observe that PGRN and GRN E (one of the proteolytic fragments of PGRN) promote neuronal survival and enhance neurite outgrowth in cultured neurons. These results demonstrate that PGRN/GRN is a neurotrophic factor with activities that may be involved in the development of the nervous system and in neurodegeneration.  相似文献   

15.
16.
Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.  相似文献   

17.
Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna−/−;grnb−/− double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.  相似文献   

18.
SDS-PAGE is one of the most powerful experimental techniques used for the separation of proteins, and most proteins are separated according to their molecular size by this technique. However, exceptional proteins showing abnormal behavior in SDS-PAGE gels are known to exist. Thermal aggregation, rarely observed with membrane proteins, is one of the exceptional behaviors of proteins during SDS-PAGE, but detailed characterization of this aggregation has not yet been achieved. In the present study, we found that a putative membrane protein, TMEM45B, very clearly showed properties of thermal aggregation when it was expressed in COS7 cells and subjected to SDS-PAGE. We dissected the region of TMEM45B responsible for this aggregation, and found that of the seven putative transmembrane domains, a region comprising the 4th to 7th ones was essential for the thermal aggregation properties. We also demonstrated that these transmembrane domains, 4th to 7th, of TMEM45B conferred thermal aggregation properties on other proteins, by fusing this amino acid sequence to target proteins. The molecular mechanism causing thermal aggregation by TMEM45B is still uncertain, but TMEM45B could be utilized as a nice model to show clear thermal aggregation in SDS-PAGE gels.  相似文献   

19.
TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive. Here, we show that TMEM41B and VMP1 are phospholipid scramblases whose deficiency impairs the normal cellular distribution of cholesterol and phosphatidylserine. Their mechanism of action on LD formation is likely to be different from that of seipin. Their role in maintaining cellular phosphatidylserine and cholesterol homeostasis may partially explain their requirement for viral infection. Our results suggest that the proper sorting and distribution of cellular lipids are essential for organelle biogenesis and viral infection.  相似文献   

20.
Members of the Anoctamin (Ano)/TMEM16A family have recently been identified as essential subunits of the Ca2+-activated chloride channel (CaCC). For example, Ano1 is highly expressed in multiple tissues including airway epithelia, where it acts as an apical conduit for transepithelial Cl secretion and helps regulate lung liquid homeostasis and mucus clearance. However, little is known about the oligomerization of this protein in the plasma membrane. Thus, utilizing mCherry- and eGFP-tagged Ano1 constructs, we conducted biochemical and Förster resonance energy transfer (FRET)-based experiments to determine the quaternary structure of Ano1. FRET and co-immunoprecipitation studies revealed that tagged Ano1 subunits directly associated before they reached the plasma membrane. This association was not altered by changes in cytosolic Ca2+, suggesting that this is a fixed interaction. To determine the oligomeric structure of Ano1, we performed chemical cross-linking, non-denaturing PAGE, and electromobility shift assays, which revealed that Ano1 exists as a dimer. These data are the first to probe the quaternary structure of Ano1. Understanding the oligomeric nature of Ano1 is an essential step in the development of therapeutic drugs that could be useful in the treatment of cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号