首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rose MR  Mueller LD  Burke MK 《Genetics》2011,188(1):1-10
There used to be a broad split within the experimental genetics research community between those who did mechanistic research using homozygous laboratory strains and those who studied patterns of genetic variation in wild populations. The former benefited from the advantage of reproducible experiments, but faced difficulties of interpretation given possible genomic and evolutionary complexities. The latter research approach featured readily interpreted evolutionary and genomic contexts, particularly phylogeny, but was poor at determining functional significance. Such burgeoning experimental strategies as genome-wide analysis of quantitative trait loci, genotype-phenotype associations, and the products of experimental evolution are now fostering a unification of experimental genetic research that strengthens its scientific power.  相似文献   

2.
Studying genomic patterns of human population structure provides important insights into human evolutionary history and the relationship among populations, and it has significant practical implications for disease-gene mapping. Here we describe a principal component (PC)-based approach to studying intracontinental population structure in humans, identify the underlying markers mediating the observed patterns of fine-scale population structure, and infer the predominating evolutionary forces shaping local population structure. We applied this methodology to a data set of 650K SNPs genotyped in 944 unrelated individuals from 52 populations and demonstrate that, although typical PC analyses focus on the top axes of variation, substantial information about population structure is contained in lower-ranked PCs. We identified 18 significant PCs, some of which distinguish individual populations. In addition to visually representing sample clusters in PC biplots, we estimated the set of all SNPs significantly correlated with each of the most informative axes of variation. These polymorphisms, unlike ancestry-informative markers (AIMs), constitute a much larger set of loci that drive genomic signatures of population structure. The genome-wide distribution of these significantly correlated markers can largely be accounted for by the stochastic effects of genetic drift, although significant clustering does occur in genomic regions that have been previously implicated as targets of recent adaptive evolution.  相似文献   

3.
While we know that climate change can potentially cause rapid phenotypic evolution, our understanding of the genetic basis and degree of genetic parallelism of rapid evolutionary responses to climate change is limited. In this study, we combined the resurrection approach with an evolve-and-resequence design to examine genome-wide evolutionary changes following drought. We exposed genetically similar replicate populations of the annual plant Brassica rapa derived from a field population in southern California to four generations of experimental drought or watered conditions in a greenhouse. Genome-wide sequencing of ancestral and descendant population pools identified hundreds of SNPs that showed evidence of rapidly evolving in response to drought. Several of these were in stress response genes, and two were identified in a prior study of drought response in this species. However, almost all genetic changes were unique among experimental populations, indicating that the evolutionary changes were largely nonparallel, despite the fact that genetically similar replicates of the same founder population had experienced controlled and consistent selection regimes. This nonparallelism of evolution at the genetic level is potentially because of polygenetic adaptation allowing for multiple different genetic routes to similar phenotypic outcomes. Our findings help to elucidate the relationship between rapid phenotypic and genomic evolution and shed light on the degree of parallelism and predictability of genomic evolution to environmental change.  相似文献   

4.
Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.  相似文献   

5.
The perennial outcrossing Arabidopsis lyrata is becoming a plant model species for molecular ecology and evolution. However, its evolutionary history, and especially the impact of the climatic oscillations of the Pleistocene on its genetic diversity and population structure, is not well known. We analyzed the broad-scale population structure of the species based on microsatellite variation at 22 loci. A wide sample in Europe revealed that glaciations and postglacial colonization have caused high divergence and high variation in variability between populations. Colonization from Central Europe to Iceland and Scandinavia was associated with a strong decrease of genetic diversity from South to North. On the other hand, the Russian population included in our data set may originate from a different refugium probably located more to the East. These genome-wide patterns must be taken into account in studies aiming at elucidating the genetic basis of local adaptation. As shown by sequence data, most of the loci used in this study do not evolve like typical microsatellite loci and show variable levels of homoplasy: this mode of evolution makes these markers less suitable to investigate the between-continent divergence and more generally the worldwide evolution of the species. Finally, a strong negative correlation was detected between levels of within-population diversity and indices of differentiation such as F(ST). We discuss the causes of this correlation as well as the potential bias it induces on the quantification and interpretation of population structure.  相似文献   

6.
Although many studies provide examples of evolutionary processes such as adaptive evolution, balancing selection, deleterious variation and genetic drift, the relative importance of these selective and stochastic processes for phenotypic variation within and among populations is unclear. Theoretical and empirical studies from humans as well as natural animal and plant populations have made progress in examining the role of these evolutionary forces within species. Tentative generalizations about evolutionary processes across species are beginning to emerge, as well as contrasting patterns that characterize different groups of organisms. Furthermore, recent technical advances now allow the combination of ecological measurements of selection in natural environments with population genetic analysis of cloned QTLs, promising advances in identifying the evolutionary processes that influence natural genetic variation.  相似文献   

7.
We used phylogenetic and population genetics approaches to evaluate the importance of the evolutionary forces on shaping the genetic structure of Rhizobium gallicum and related species. We analysed 54 strains from several populations distributed in the Northern Hemisphere, using nucleotide sequences of three 'core' chromosomal genes (rrs, glnII and atpD) and two 'auxiliary' symbiotic genes (nifH and nodB) to elucidate the biogeographic history of the species and symbiotic ecotypes (biovarieties) within species. The analyses revealed that strains classified as Rhizobium mongolense and Rhizobium yanglingense belong to the chromosomal evolutionary lineage of R. gallicum and harbour symbiotic genes corresponding to a new biovar; we propose their reclassification as R. gallicum bv. orientale. The comparison of the chromosomal and symbiotic genes revealed evidence of lateral transfer of symbiotic information within and across species. Genetic differentiation analyses based on the chromosomal protein-coding genes revealed a biogeographic pattern with three main populations, whereas the 16S rDNA sequences did not resolve that biogeographic pattern. Both the phylogenetic and population genetic analyses showed evidence of recombination at the rrs locus. We discuss our results in the light of the contrasting views of bacterial species expressed by microbial taxonomist and evolutionary biologists.  相似文献   

8.
Identifying causal genetic variants underlying heritable phenotypic variation is a long‐standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole‐genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild‐caught zebra finches. Then, we validated the most promising SNP–phenotype associations (n = 25 SNPs) in 5228 birds from four populations. Genotype–phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.  相似文献   

9.
H Akashi  N Osada  T Ohta 《Genetics》2012,192(1):15-31
The "nearly neutral" theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection.  相似文献   

10.
Retrotransposons are mobile genetic elements that are ubiquitous components of eukaryotic genomes. The evolutionary success of retrotransposons is explained by their ability to replicate faster than the host genomes in which they reside. Elements with higher rates of genomic replication possess a selective advantage over less active elements. Retrotransposon populations, therefore, are shaped largely by selective forces acting at the genomic level between elements. To evaluate rigorously the effects of selective forces acting on retrotransposons, detailed information on the patterns of molecular variation within and between retrotransposon families is needed. The sequencing of the Saccharomyces cerevisiae genome, which includes the entire genomic complement of yeast retrotransposons, provides an unprecedented opportunity to access and analyze such data. In this study, we analyzed in detail the patterns of nucleotide variation within the open reading frames of two parental (Ty1 and Ty2) and one hybrid (Ty1/2) family of yeast retrotransposons. The pattern and distribution of nucleotide changes on the phylogenetic reconstructions of the three families of Ty elements reveal evidence of negative selection on both internal and external branches of the Ty phylogenies. These results indicate that most, if not all, Ty elements examined represent active or recently active retrotransposon lineages. We discuss the relevance of these findings with respect to the coevolutionary dynamic operating between genomic element populations and the host organisms in which they reside. Received: 5 November 1998 / Accepted: 17 March 1999  相似文献   

11.
Linkage disequilibrium for different scales and applications   总被引:2,自引:0,他引:2  
Assessing the patterns of linkage disequilibrium (LD) has become an important issue in both evolutionary biology and medical genetics since the rapid accumulation of densely spaced DNA sequence variation data in several organisms. LD deals with the correlation of genetic variation at two or more loci or sites in the genome within a given population. There are a variety of LD measures which range from traditional pairwise LD measures such as D' or r2 to entropy-based multi-locus measures or haplotype-specific approaches. Understanding the evolutionary forces (in particular recombination) that generate the observed variation of LD patterns across genomic regions is addressed by model-based LD analysis. Marker type and its allelic composition also influence the observed LD pattern, microsatellites having a greater power to detect LD in population isolates than SNPs. This review aims to explain basic LD measures and their application properties.  相似文献   

12.
Ross KG 《Molecular ecology》2001,10(2):265-284
Molecular genetic studies of group kin composition and local genetic structure in social organisms are becoming increasingly common. A conceptual and mathematical framework that links attributes of the breeding system to group composition and genetic structure is presented here, and recent empirical studies are reviewed in the context of this framework. Breeding system properties, including the number of breeders in a social group, their genetic relatedness, and skew in their parentage, determine group composition and the distribution of genetic variation within and between social units. This group genetic structure in turn influences the opportunities for conflict and cooperation to evolve within groups and for selection to occur among groups or clusters of groups. Thus, molecular studies of social groups provide the starting point for analyses of the selective forces involved in social evolution, as well as for analyses of other fundamental evolutionary problems related to sex allocation, reproductive skew, life history evolution, and the nature of selection in hierarchically structured populations. The framework presented here provides a standard system for interpreting and integrating genetic and natural history data from social organisms for application to a broad range of evolutionary questions.  相似文献   

13.
Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations — especially of social mammals — with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants ( Loxodonta africana ), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (ΦST = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.  相似文献   

14.
 利用9对SSR引物对中华猕猴桃(Actinidia chinensis)和美味猕猴桃(A. deliciosa)两近缘种的5个同域分布复合体和各自1个非同域分布居群进行了遗传多样性、居群遗传结构的分析以及种间杂交渐渗的探讨。结果表明:1)两物种共有等位基因比例高达81.13%,物种特有等位基因较少(中华猕猴桃:13.27%,美味猕猴桃:5.61%),但共享等位基因表型频率在两近缘种间存在差异,而且与各同域复合体中两物种样本的交错程度或间距存在关联;2)两种猕猴桃均具有极高遗传多样性,美味猕猴桃的遗传多样性(Ho=0 .749, PIC=0.818)都略高于中华猕猴桃(Ho=0.686,PIC=0.799);3)两猕 猴桃物种均具有较低的Nei’s居群遗传分化度,但AMOVA分析结果揭示种内异域居群间(FST=0.091 5)和同域复合体种间(FST=0.111 5)均存在一定程度的遗传分化;中华猕猴桃居群遗传分化(GST=0.086; FST=0.212 1)高于美味猕猴桃(GST= 0.080;FST=0.142 0);4)同域分布复合体两物种间的遗传分化(GST=0.020)低于物种内异域居群间的遗传分化(中华猕猴桃:GST=0.086; 美味猕猴桃:GST=0.080),同域复合体物种间的基因流(Nm=7.89 -29.75)远远高于 同种异域居群间(中华猕猴桃:Nm =2.663; 美味猕猴桃:Nm=2.880); 5)居群UPGMA聚类揭示在同一地域的居群优先聚类,个体聚类结果显示多数个体聚在各自居群组内,但各地理居群并不按地理距离的远近聚类,这与Mantel相关性检测所揭示的居群间遗传距离与地理距离没有显著性相关的结果一致。进一步分析表明两种猕猴桃的遗传多样性和居群遗传结构不仅受其广域分布、远交、晚期分化等生活史特性的影响,同时还与猕猴桃的染色体基数高 (x=29)、倍性复杂和种间杂交等因素密切相关,其中两种猕猴桃的共享祖先多态性和同域分布种间杂交基因渗透对两猕猴桃的居群遗传结构产生了重要影响。  相似文献   

15.
Are all sex chromosomes created equal?   总被引:1,自引:0,他引:1  
Three principal types of chromosomal sex determination are found in nature: male heterogamety (XY systems, as in mammals), female heterogamety (ZW systems, as in birds), and haploid phase determination (UV systems, as in some algae and bryophytes). Although these systems share many common features, there are important biological differences between them that have broad evolutionary and genomic implications. Here we combine theoretical predictions with empirical observations to discuss how differences in selection, genetic properties and transmission uniquely shape each system. We elucidate how the differences among these systems can be exploited to gain insights about general evolutionary processes, genome structure, and gene expression. We suggest directions for research that will greatly increase our general understanding of the forces driving sex-chromosome evolution in diverse organisms.  相似文献   

16.
17.
The present investigation examines the role of genetic constraints in shaping evolutionary change in the Nigella arvensis species complex. Parent-offspring analyses of two populations of N. degenii demonstrated high heritabilities for a wide range of vegetative and floral characters, indicating a great potential for further adaptive change. The populations differed significantly in the heritability for leaf length and in the genetic correlation between plant height and peduncle length, suggesting that these populations would respond differently to identical selection pressures. There was a tendency for large-scale diversity to extrapolate within-population variability, at least for the floral trait associations, while genetic data from a segregating F3 hybrid population indicated stability in the correlation structure across two environments. On the basis of hybrid data, I propose that inbreeding effects and pleiotropic relationships with leaf size may have facilitated the reduction in floral morphology accompanying the evolution of autogamy in related taxa.  相似文献   

18.
19.
Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South–East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.  相似文献   

20.
边缘种群指地理分布边缘可检测到的一定数量的同种个体集合, 准确评价其遗传多样性对于理解第四纪冰期后气候变化对物种边缘扩展或收缩、遗传资源保护与利用以及物种形成等有重要意义。该文探讨了维持植物边缘种群遗传多样性的进化机制, 分析交配系统对物种边缘及其遗传多样性的影响, 比较了边缘与中心种群遗传多样性的差异及其形成的生态与进化过程, 并探讨了边缘种群遗传多样性与其所在的群落物种多样性的关系及理论基础。该文提出今后研究的重点是应用全基因组序列或转录组基因序列研究前缘-后缘种群之间或边缘-中心种群之间的适应性差异, 边缘种群与所在群落其他物种之间相互作用的分子机制, 深入解析边缘种群对环境的适应及边缘种群遗传多样性与群落物种多样性关系的生态与进化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号