首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The polar organelle development protein, PodJ, is important for proper establishment of polarity in Caulobacter crescentus. podJ null mutants are unable to form holdfast or pili, have reduced swarming motility, and have difficulty ejecting the flagellum during the swarmer to stalked cell transition. In this study, we create a series of truncation mutants to investigate functional domains of PodJ. We show that PodJ has a transmembrane domain between amino acids 600 and 670. We identify a periplasmic region important for pili production and a cytoplasmic region required for holdfast formation and swarming motility, and establish that PleC localization is not required for holdfast formation and motility in soft agar. Analysis of the mutants reveals that the last 54 amino acids of the protein negatively regulate processing of the full-length form of the protein, PodJ(L), to a shorter form, PodJ(S). Finally, we identify a cytoplasmic region of PodJ involved in targeting it to the flagellar pole, and a periplasmic region required for localization of PleC.  相似文献   

3.
Regulation of polar development and cell division in Caulobacter crescentus relies on the dynamic localization of several proteins to cell poles at specific stages of the cell cycle. The polar organelle development protein, PodJ, is required for the synthesis of the adhesive holdfast and pili. Here we show the cell cycle localization of PodJ and describe a novel role for this protein in controlling the dynamic localization of the developmental regulator PleC. In swarmer cells, a short form of PodJ is localized at the flagellated pole. Upon differentiation of the swarmer cell into a stalked cell, full length PodJ is synthesized and localizes to the pole opposite the stalk. In late predivisional cells, full length PodJ is processed into a short form which remains localized at the flagellar pole after cell division and is degraded during swarmer to stalked cell differentiation. Polar localization of the developmental regulator PleC requires the presence of PodJ. In contrast, the polar localization of PodJ is not dependent on the presence of PleC. These results indicate that PodJ is an important determinant for the localization of a major regulator of cell differentiation. Thus, PodJ acts directly or indirectly to target PleC to the incipient swarmer pole, to establish the cellular asymmetry that leads to the synthesis of holdfasts and pili at their proper subcellular location.  相似文献   

4.
5.
6.
Scaffolding proteins can customize the response of signaling networks to support cell development and behaviors. PleC is a bifunctional histidine kinase whose signaling activity coordinates asymmetric cell division to yield a motile swarmer cell and a stalked cell in the gram-negative bacterium Caulobacter crescentus. Past studies have shown that PleC’s switch in activity from kinase to phosphatase correlates with a change in its subcellular localization pattern from diffuse to localized at the new cell pole. Here we investigated how the bacterial scaffolding protein PodJ regulates the subcellular positioning and activity of PleC. We reconstituted the PleC-PodJ signaling complex through both heterologous expressions in Escherichia coli and in vitro studies. In vitro, PodJ phase separates as a biomolecular condensate that recruits PleC and inhibits its kinase activity. We also constructed an in vivo PleC-CcaS chimeric histidine kinase reporter assay and demonstrated using this method that PodJ leverages its intrinsically disordered region to bind to PleC’s PAS sensory domain and regulate PleC-CcaS signaling. Regulation of the PleC-CcaS was most robust when PodJ was concentrated at the cell poles and was dependent on the allosteric coupling between PleC-CcaS’s PAS sensory domain and its downstream histidine kinase domain. In conclusion, our in vitro biochemical studies suggest that PodJ phase separation may be coupled to changes in PleC enzymatic function. We propose that this coupling of phase separation and allosteric regulation may be a generalizable phenomenon among enzymes associated with biomolecular condensates.  相似文献   

7.
The polar organelle development gene, podJ, is expressed during the swarmer-to-stalked cell transition of the Caulobacter crescentus cell cycle. Mutants with insertions that inactivate the podJ gene are nonchemotactic, deficient in rosette formation, and resistant to polar bacteriophage, but they divide normally. In contrast, hyperexpression of podJ results in a lethal cell division defect. Nucleotide sequence analysis of the podJ promoter region revealed a binding site for the global response regulator, CtrA. Deletion of this site results in increased overall promoter activity, suggesting that CtrA is a negative regulator of the podJ promoter. Furthermore, synchronization studies have indicated that temporal regulation is not dependent on the presence of the CtrA binding site. Thus, although the level of podJ promoter activity is dependent on the CtrA binding site, the temporal control of podJ promoter expression is dependent on other factors.  相似文献   

8.
Caulobacter crescentus attachment is mediated by the holdfast, a complex of polysaccharide anchored to the cell by HfaA, HfaB and HfaD. We show that all three proteins are surface exposed outer membrane (OM) proteins. HfaA is similar to fimbrial proteins and assembles into a high molecular weight (HMW) form requiring HfaD, but not holdfast polysaccharide. The HfaD HMW form is dependent on HfaA but not on holdfast polysaccharide. We show that HfaA and HfaD form homomultimers and that they require HfaB for stability and OM translocation. All three proteins localize to the late pre‐divisional flagellar pole, remain at this pole in swarmer cells, and localize at the stalk tip after the stalk is synthesized at the same pole. Hfa protein localization requires the holdfast polysaccharide secretion proteins and the polar localization factor PodJ. An hfaB mutant is much more severely deficient in adherence and holdfast attachment than hfaA and hfaD mutants. An hfaA, hfaD double mutant phenocopies either single mutant, suggesting that HfaB is involved in holdfast attachment beyond secretion of HfaA and HfaD. We hypothesize that HfaB secretes HfaA and HfaD across the outer membrane, and the three proteins form a complex anchoring the holdfast to the stalk.  相似文献   

9.
10.
A method was developed for protein localization in Mycoplasma pneumoniae by immunofluorescence microscopy. The P1 adhesin protein was revealed to be located at least at one cell pole in all adhesive cells, as has been observed by immunoelectron microscopy. Cell images were classified according to P1 localization and assigned by DNA content. Cells with a single P1 focus at one cell pole had a lower DNA content than cells with two foci, at least one of which was positioned at a cell pole. Those with one focus at each cell pole had the highest DNA content, suggesting that the nascent attachment organelle is formed next to the old one and migrates to the opposite cell pole before cell division. Double staining revealed that the accessory proteins for cytadherence-HMW1, HMW3, P30, P90, P40, and P65-colocalized with the P1 adhesin in all cells. The localization of cytadherence proteins was also examined in cytadherence-deficient mutant cells with a branched morphology. In M5 mutant cells, which lack the P90 and P40 proteins, HMW1, HMW3, P1, and P30 were focused at the cell poles of short branches, and P65 showed no signal. In M7 mutant cells, which produce a truncated P30 protein, HMW1, HMW3, P1, P90, and P40 were focused, and P65 showed no signal. In M6 mutant cells, which express no HMW1 and a truncated P30 protein, the P1 adhesin was distributed throughout the entire cell body, and no signal was detected for the other proteins. These results suggest that the cytadherence proteins are sequentially assembled to the attachment organelle with HMW1 first, HMW3, P1, P30, P90, and P40 next, and P65 last.  相似文献   

11.
12.
The terminal organelle of the cell wall-less pathogenic bacterium Mycoplasma pneumoniae is a complex structure involved in adherence, gliding motility and cell division. This membrane-bound extension of the mycoplasma cell possesses a characteristic electron-dense core. A number of proteins having direct or indirect roles in M. pneumoniae cytadherence have been previously localized to the terminal organelle. However, the cytadherence-accessory protein HMW2, which is required for the stabilization of several terminal organelle components, has been refractory to antibody-based approaches to subcellular localization. In the current study, we constructed a sandwich fusion of HMW2 and enhanced green fluorescent protein (EGFP) and expressed this fusion in wild-type M. pneumoniae and the hmw2- mutant I-2. The fusion protein was produced in both backgrounds at wild-type levels and supported stabilization of proteins HMW1, HMW3 and P65, and haemadsorption function in mutant I-2. Furthermore, the fusion protein was fluorescent and localized specifically to the terminal organelle. However, the EGFP moiety appeared to interfere partially with processes related to cell division, as transformant cells exhibited an increased incidence of bifurcated attachment organelles. These data together with structural predictions suggest that HMW2 is the defining component of the electron-dense core of the terminal organelle.  相似文献   

13.
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes.  相似文献   

14.
Mitochondrial and chloroplast division controls the number and morphology of organelles, but how cells regulate organelle division remains to be clarified. Here, we show that each step of mitochondrial and chloroplast division is closely associated with the cell cycle in Cyanidioschyzon merolae. Electron microscopy revealed direct associations between the spindle pole bodies and mitochondria, suggesting that mitochondrial distribution is physically coupled with mitosis. Interconnected organelles were fractionated under microtubule-stabilizing condition. Immunoblotting analysis revealed that the protein levels required for organelle division increased before microtubule changes upon cell division, indicating that regulation of protein expression for organelle division is distinct from that of cytokinesis. At the mitochondrial division site, dynamin stuck to one of the divided mitochondria and was spatially associated with the tip of a microtubule stretching from the other one. Inhibition of microtubule organization, proteasome activity or DNA synthesis, respectively, induced arrested cells with divided but shrunk mitochondria, with divided and segregated mitochondria, or with incomplete mitochondrial division restrained at the final severance, and repetitive chloroplast division. The results indicated that mitochondrial morphology and segregation but not division depend on microtubules and implied that the division processes of the two organelles are regulated at distinct checkpoints.  相似文献   

15.
16.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.  相似文献   

17.
18.
Caulobacter crescentus assembles many of its cellular machines at distinct times and locations during the cell cycle. PodJ provides the spatial cues for the biogenesis of several polar organelles, including the pili, adhesive holdfast and chemotactic apparatus, by recruiting structural and regulatory proteins, such as CpaE and PleC, to a specific cell pole. PodJ is a protein with a single transmembrane domain that exists in two forms, full-length (PodJL) and truncated (PodJS), each appearing during a specific time period of the cell cycle to control different aspects of polar organelle development. PodJL is synthesized in the early predivisional cell and is later proteolytically converted to PodJS. During the swarmer-to-stalked transition, PodJS must be degraded to preserve asymmetry in the next cell cycle. We found that MmpA facilitates the degradation of PodJS. MmpA belongs to the site-2 protease (S2P) family of membrane-embedded zinc metalloproteases, which includes SpoIVFB and YluC of Bacillus subtilis and YaeL of Escherichia coli. MmpA appears to cleave within or near the transmembrane segment of PodJS, releasing it into the cytoplasm for complete proteolysis. While PodJS has a specific temporal and spatial address, MmpA is present throughout the cell cycle; furthermore, periplasmic fusion to mRFP1 suggested that MmpA is uniformly distributed around the cell. We also determined that mmpA and yaeL can complement each other in C. crescentus and E. coli, indicating functional conservation. Thus, the sequential degradation of PodJ appears to involve regulated intramembrane proteolysis (Rip) by MmpA.  相似文献   

19.
Asymmetric cell division in Caulobacter crescentus produces two cell types, a stalked cell and a new swarmer cell, with characteristics surface structures. We have examined the role of the cell cycle in the differentiation of these two cells using the adsorption of bacteriophage øLC72, the assembly of the polar flagellum, and stalk formation as assays for changes in surface morphology. Previous studies of this aquatic bacterium [17, 25] have suggested that the replicating chromosome acts as a 'clock' in timing the formation of the flagellar filament at one pole of the new swarmer cell. The analysis of conditional cell cycle mutants presented here extends these results by showing that DNA synthesis is also required for adsorption of phage øLC72 and, more importantly, they also suggest that a late cell division step is involved in determining the spatial pattern in which the phage receptors and flagella are assembled. We propose that this cell division step is required for formation of 'organizational' centers which direct the assembly of surface structures at the new cell poles, and for the polarity reversal in assembly that accompanies swarmer cell to stalked cell development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号