首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator, which has a quite unique cyclic phosphate ring at sn-2 and sn-3 positions of the glycerol backbone. We have designed and chemically synthesized several metabolically stabilized derivatives of cPA. 2-Carba-cPA (2ccPA) is one of the synthesized compounds in which the phosphate oxygen was replaced with a methylene group at the sn-2 position, and it showed much more potent biological activities than natural cPA. Here, we developed a new method of 2ccPA enantiomeric synthesis. And we examined the effects of 2ccPA enantiomers on autotaxin (ATX) activity, cancer cell invasion and nociceptive reflex. As well as racemic-2ccPA, both enantiomers showed inhibitory effects on ATX activity, cancer cell invasion and nociceptive reflex. As their effects were not significantly different from each other, the chirality of 2ccPA may not be critical for these biological functions of 2ccPA.  相似文献   

2.
Cyclic phosphatidic acid (1-acyl-sn-glycerol-2,3-cyclic phosphate; cPA) is a naturally occurring analog of lysophosphatidic acid (LPA) with a variety of distinctly different biological activities from those of LPA. In contrast to LPA, a potent inducer of tumor cell invasion, palmitoyl-cPA inhibits FBS- and LPA-induced transcellular migration and metastasis. To prevent the conversion of cPA to LPA we synthesized cPA derivatives by stabilizing the cyclic phosphate ring; to prevent the cleavage of the fatty acid we generated alkyl ether analogs of cPA. Both sets of compounds were tested for inhibitory activity on transcellular tumor cell migration. Carba derivatives, in which the phosphate oxygen was replaced with a methylene group at either the sn-2 or the sn-3 position, showed much more potent inhibitory effects on MM1 tumor cell transcellular migration and the pulmonary metastasis of B16-F0 melanoma than the natural pal-cPA. The antimetastatic effect of carba-cPA was accompanied by the inhibition of RhoA activation and was not due to inhibition of the activation of LPA receptors.  相似文献   

3.
Autotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2) is an autocrine motility factor initially characterized from A2058 melanoma cell-conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA). Production of LPA is sufficient to explain the effects of ATX on tumor cells. Cyclic phosphatidic acid (cPA) is a naturally occurring analog of LPA in which the sn-2 hydroxy group forms a 5-membered ring with the sn-3 phosphate. Cellular responses to cPA generally oppose those of LPA despite activation of apparently overlapping receptor populations, suggesting that cPA also activates cellular targets distinct from LPA receptors. cPA has previously been shown to inhibit tumor cell invasion in vitro and cancer cell metastasis in vivo. However, the mechanism governing this effect remains unresolved. Here we show that 3-carba analogs of cPA lack significant agonist activity at LPA receptors yet are potent inhibitors of ATX activity, LPA production, and A2058 melanoma cell invasion in vitro and B16F10 melanoma cell metastasis in vivo.  相似文献   

4.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.  相似文献   

5.
A novel bioactive lipid, cyclic phosphatidic acid (cPA), was isolated originally from myxoamoebae of a true slime mold, Physarum polycephalum, and has now been detected in a wide range of organisms from slime molds to humans. It has a cyclic phosphate at the sn-2 and sn-3 positions of the glycerol carbons, and this structure is absolutely necessary for its activities. This substance shows specific biological functions, including antimitogenic regulation of the cell cycle, regulation of actin stress fiber formation and rearrangement, inhibition of cancer cell invasion and metastasis, regulation of differentiation and viability of neuronal cells, and mobilization of intracellular calcium. Although the structure of cPA is similar to that of lysophosphatidic acid (LPA), its biological activities are apparently distinct from those of LPA. In the present review, we focus mainly on the enzymatic formation of cPA, the antimitogenic regulation of the cell cycle, the inhibition of cancer cell invasion and metastasis, and the neurotrophic effect of cPA.  相似文献   

6.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that contains a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. Using mouse models for multiple sclerosis (cuprizone-induced demyelination and experimental autoimmune encephalomyelitis) and traumatic brain injury, we revealed that cPA and its metabolically stabilized cPA derivative, 2-carba-cPA (2ccPA), have potential to protect against neuroinflammation. In this study, we investigated whether 2ccPA has anti-inflammatory effect on peripheral immune function or not using inflammation-induced macrophages-like cell line, THP-1 monocytes differentiated by phorbol 12-myristate 13-acetate (PMA). Lipopolysaccharide (LPS)-stimulated THP-1 cells were found to have higher expression of the mRNAs of several inflammation-related cytokines and of the enzyme cyclooxygenase-2 (Cox-2); however, when THP-1 cells were stimulated by LPS in the presence of 2ccPA, the increase in the expression of pro-inflammatory cytokine and Cox-2 mRNA was attenuated. 2ccPA treatment also decreased the amount of prostaglandin E2 (PGE2) produced by LPS-stimulated THP-1 cells and decreased expression of the mRNA of prostaglandin E receptor 2 (EP2, PTGER2), a PGE2 receptor that mediates inflammation. These results indicate that 2ccPA has anti-inflammatory properties.  相似文献   

7.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.  相似文献   

8.
Autotaxin (ATX) is a catalytic protein, which possesses lysophospholipase D activity, and thus involved in cellular membrane lipid metabolism and remodeling. Primarily, ATX was thought as a culprit protein for cancer, which potently stimulates cancer cell proliferation and tumor cell motility, augments the tumorigenicity and induces angiogenic responses. The product of ATX catalyzed reaction, lysophosphatidic acid (LPA) is a potent mitogen, which facilitates cell proliferation and migration, neurite retraction, platelet aggregation, smooth muscle contraction, actin stress formation and cytokine and chemokine secretion. In addition to LPA formation, later ATX has been found to catalyze the formation of cyclic phosphatidic acid (cPA), which have antitumor role by antimitogenic regulation of cell cycle, inhibition of cancer invasion and metastasis. Furthermore, the very attractive information to the scientists is that the LPA/cPA formation can be altered at different physiological conditions. Thus the dual role of ATX with the scope of product manipulation has made ATX a novel target for cancer treatment.  相似文献   

9.
Cyclic phosphatidic acid (cPA; 1-acyl-sn-glycerol-2,3-cyclic phosphate) is an analog of the growth factor-like phospholipid mediator lysophosphatidic acid (LPA). As brain tissue is the richest source of cPA we tested its effects on hippocampal neurons from day 16/17 embryonic rat cultured in a serum-free medium. Nanomolar concentrations of cPA elicited a neurotrophic effect and promoted neurite outgrowth that exceeded that of 50 ng/mL nerve growth factor (NGF). Pertussis toxin, the LPA1/LPA3 receptor-selective antagonist dioctylglycerol pyrophosphate, the myristoylated inhibitory pseudosubstrate peptide of protein kinase A (PKI), Wortmannin and PD98059 abolished the neurite-promoting effect. cPA elicited a sustained activation of extracellular signal-related kinases (ERK) 1/2 and Akt. Clostridium difficile toxin B, an inhibitor of the Rho family of GTPases, reduced cPA-induced enhancement of neurite outgrowth. In B5P cells, a clonal cell line of PC12 cells overexpressing tyrosine kinase NGF receptor (TrkA), cPA elicited transphosphorylation of TrkA. cPA-elicited ERK activation was blocked by K252a and PKI. These results suggest that cPA mimics the effects of, and activates signaling pathways similar to, the neurotrophin NGF in cultured embryonic hippocampal neurons and B5P cells.  相似文献   

10.
Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.  相似文献   

11.
Short-chain phosphatidic acid derivatives, dioctanoyl glycerol pyrophosphate (DGPP 8:0, 1) and phosphatidic acid 8:0 (PA 8:0, 2), were previously identified as subtype-selective LPA(1) and LPA(3) receptor antagonists. Recently, we reported that the replacement of the phosphate headgroup by thiophosphate in a series of fatty alcohol phosphates (FAP) improves agonist as well as antagonist activities at LPA GPCR. Here, we report the synthesis of stereoisomers of PA 8:0 analogs and their biological evaluation at LPA GPCR, PPARgamma, and ATX. The results indicate that LPA receptors stereoselectively interact with glycerol backbone modified ligands. We observed entirely stereospecific responses by dioctyl PA 8:0 compounds, in which (R)-isomers were found to be agonists and (S)-isomers were antagonists of LPA GPCR. From this series, we identified compound 13b as the most potent LPA(3) receptor subtype-selective agonist (EC(50)=3 nM), and 8b as a potent and selective LPA(3) receptor antagonist (K(i)=5 nM) and inhibitor of ATX (IC(50)=600 nM). Serinediamide phosphate 19b was identified as an LPA(3) receptor specific antagonist with no effect on LPA(1), LPA(2), and PPARgamma.  相似文献   

12.
Cyclic phosphatidic acid (cPA) is found in cells from slime mold to humans and has a largely unknown function. We previously reported that cPA significantly inhibited the lipid accumulation in 3T3-L1 adipocytes through inhibition of PPARγ activation. We find here that cPA reduced intracellular triglyceride levels and inhibited the phosphodiesterase 3B (PDE3B) expression in 3T3-L1 adipocytes. PPARγ activation in adipogenesis that can be blocked by treatment with cPA then participates in adipocyte function through inhibition of PDE3B expression. We also found the intracellular cAMP levels in 3T3-L1 adipocytes increased after exposure to cPA. These findings contribute to the participation of cPA on the lipolytic activity in 3T3-L1 adipocytes. Our studies imply that cPA might be a therapeutic compound in the treatment of obesity and obesity-related diseases.  相似文献   

13.
Lipid-protein interactions play essential roles in many biological phenomena. Lysophospholipid mediators, such as cyclic phosphatidic acid (cPA), have been recognized as secondary messengers, yet few cellular targets for cPA have been identified to date. Furthermore, the molecular mechanism that activates these downstream signaling events remains unknown. In this study, using metabolically stabilized cPA carba-derivative (2ccPA)-immobilized magnetic beads, we identified adenine nucleotide translocase 2 (ANT2) as a 2ccPA-interacting protein in microglial cells. 2ccPA was tested for its ability to inhibit apoptosis caused by phenylarsine oxide in microglial cells. This damage was significantly improved upon 2ccPA treatment, along with cell proliferation, apoptosis, reactive oxygen species production, and intracellular ATP levels. This is the first report to suggest the direct binding of 2ccPA to ANT2 in microglial cells and provides evidence for a new benefit of 2ccPA in protecting microglial cells from apoptotic death induced by the ANT2-mediated signaling pathway.  相似文献   

14.
The efficient synthesis of 3-O-thia-cPAs (4a-d), sulfur analogues of cyclic phosphatidic acid (cPA), has been achieved. The key step of the synthesis is an intramolecular Arbuzov reaction to construct the cyclic thiophosphate moiety. The present synthetic route enables the synthesis of 4a-d in only four steps from the commercially available glycidol. Preliminary biological experiments showed that 4a-d exhibited a similar inhibitory effect on autotaxin (ATX) as original cPA.  相似文献   

15.
An LC/ESI/MS/MS method for cyclic phosphatidic acid (cPA) quantification in serum is established in the present report. The limit of quantitation of the assay reaches low nanomolar level in human serum and the CV% are within 10%. Using this method, we successfully quantify the levels of two cPA species, 16:0 and 18:1, in human serum. We find that the concentrations of 16:0 cPA in the serum of normal subjects and post-surgery ovarian cancer patients are significantly higher than its corresponding concentration in pre-surgery ovarian cancer patients, supporting the observation that cPA has anti-cancer activity. Another discovery is that the addition of strong acids (such as hydrochloric acid) in human serum may lead to the production of artificial cPA. Therefore, strong acids should be avoided in the extraction of cPA present in a complex matrix. Based on this observation, a new lipid extraction method was developed and used to extract cPA. The extraction recovery is close to 80%, guaranteeing an accurate quantification of cPA by LC/ESI/MS/MS can be performed.  相似文献   

16.
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid (LPA), was previously identified in human serum. Although cPA possesses distinct physiological activities not elicited by LPA, its biochemical origins have scarcely been studied. In the present study, we assayed cPA formation from lysophosphatidylcholine in fetal bovine serum and found significant activity of transphosphatidylation that generated cPA. The cPA-producing enzyme was purified from fetal bovine serum using five chromatographic steps yielding a 100-kDa protein with cPA biosynthetic activity. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of its tryptic peptides revealed that the enzyme shared identical fragments with human autotaxin, a serum lysophospholipase D that produces LPA. Western blot analysis demonstrated that the 100-kDa protein was specifically recognized by an anti-human autotaxin antibody. Moreover, recombinant rat autotaxin was found to generate cPA in addition to LPA. No significant cPA- or LPA-producing activity was detected in autotaxin-depleted serum from bovine or human prepared by immunoprecipitation with an anti-autotaxin monoclonal antibody. These results indicate that the generation of cPA and LPA in serum is mainly attributed to autotaxin.  相似文献   

17.
A novel bioactive lipid, cyclic phosphatidic acid (cPA), was identified in lipids bound to human serum albumin. A cPA fraction was extracted and purified from human serum albumin by use of a combination of preparative TLC and HPLC. Electrospray ionization mass spectrometry of the purified fraction showed molecular ions corresponding to cPA, which was composed of some different fatty acid species. The most abundant component was identified as palmitoyl-cPA by tandem mass spectrometry using collision-induced dissociation. These data have established that cPA is a naturally occurring lipid bound to human serum albumin.  相似文献   

18.
Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7–69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1–3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.  相似文献   

19.
Colon cancer is a malignancy that develops in colon and rectal tissues. The prognosis for metastatic colon cancer remains poor, and novel therapeutic options are required to reduce colon cancer mortality. Recently, intracellular cAMP levels have been suggested to influence the behavior of cancer cells. Intriguingly, cyclic phosphatidic acid (cPA) and its structural analogs inhibit growth in many cancer cell lines, and our previous work has suggested that cPA increases cAMP production. Phosphodiesterase (PDE) type 3 isoforms PDE3A and PDE3B are expressed mainly in cardiovascular tissue and adipose tissue, respectively. Moreover, increase in intracellular cAMP levels has been associated with the inhibition of growth in colon cancer cells. These findings suggest that cPA could be used in colon cancer therapy. In this study, we found that cPA inhibited the growth of HT-29 cells, which express high levels of PDE3B, but not the growth of DLD-1 cells, which express low levels of PDE3B. Furthermore, cPA inhibited the phosphorylation of Akt in HT-29 cells in a dose-dependent fashion. Our results suggest that PDE3B expression and intracellular cAMP levels are correlated with the proliferation of colon cancer cells. These findings demonstrate for the first time that cPA may serve as a useful a molecule in targeted therapy for colon cancer.  相似文献   

20.
Autotaxin (ATX) is a tumor cell motility-stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5'-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein-coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号