首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Methods for calculating the probability of detecting a carrier of a recessive gene by utilizing matings among related individuals are presented for single and litter bearing species. The confidence level for detection of heterozygosity depends upon: (1) the genetic relationship between mates, (2) the number of mates per male and the number of offspring per mate, (3) whether an estimate of recessive gene frequency before selection is available and (4) the magnitude of that frequency. Methods of computing probability of heterozygosity vs homozygosity utilizing Bayes theorem also are presented. In the conventional progeny test method, a sire initially is assumed heterozygous before calculations are made, but no prior information concerning his probable genotype is utilized. In the method using Bayes theorem, prior sources of information from relatives or from estimates of population allele frequency are utilized. This method gives the exact probability that a sire is not a carrier, given prior information and that he produces all normal offspring. These methods could be used in any sexually reproducing species to identify not only detrimental genes but beneficial genes as well.  相似文献   

2.
Summary Use of marker genes for quantitative traits has been suggested as a supplement to selection for livestock species. Linkage relationships can be estimated by using data from offspring of a heterozygous parent, if offspring can be positively assigned segregation of one or the other of the marker alleles. In field data, some data on offspring can be characterized and used to estimate the difference in chromosome substitution effects, but other matings result in uncertain transfer of the marker alleles. In this study, an alternative estimation procedure is proposed that would allow incorporation of data on all offspring of a heterozygous parent, even those where chromosome segregation is ambiguous. If the frequency of the marker alleles is known in the population of mates of a heterozygous individual, the mean and variance of the heterozygous offspring can be used in a generalized leastsquares model to estimate the chromosome substitution effect. When gene frequencies are not known, maximum likelihood estimates can be obtained from the data for use in a conditional estimate. Monte Carlo simulations of data following the assumed genetic model were analyzed as proposed, and parameter estimates were characterized. Estimates of chromosome substitution effects were reasonable approximations of input values. Distributions of t-statistics testing the null hypothesis of no difference between marked chromosome segments were unbiased, with only slightly larger variance than expected. Addition of data from heterozygous offspring improved the efficiency of detection of chromosome substitution effects by more than four times when marker gene frequencies were low.  相似文献   

3.
Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world’s largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles.  相似文献   

4.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

5.
The advantages of segregation and the evolution of sex   总被引:4,自引:0,他引:4  
Otto SP 《Genetics》2003,164(3):1099-1118
In diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual's allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.  相似文献   

6.
Inactivation of expression of the paternal allele at two maternally silent imprinted loci has recently been reported to diminish the quality of care that female mice lavish on their offspring. This suggests that there can be disagreement between the maternally and paternally derived genomes of mothers over how much care for offspring is appropriate, with the paternally derived genome favoring greater care. The reason for such disagreement is not obvious because the maternally and paternally derived alleles at a locus have equal probabilities of being transmitted to each of the mother's ova and, therefore, would appear to have equal interests in a mother's offspring. However, if a female mates with a related male, her two alleles may have different probabilities of being present in the sperm that fertilize her ova. Natural selection can favor silencing of the maternally derived allele at a locus that enhances the quality of maternal care if the average patrilineal relatedness between a female and her mates decreases more rapidly than the average matrilineal relatedness. Just such an asymmetrical decrease in relatedness over time would be expected in a structured population in which patrilineal inbreeding is more common than matrilineal inbreeding.  相似文献   

7.
Schizophrenia and human leukocyte antigen (HLA) matching between couples or between mothers and offspring have independently been associated with prenatal/obstetric complications, including preeclampsia and low birth weight. Here, we report the results of a family-based candidate-gene study that brings together these two disparate lines of research by assessing maternal-fetal genotype matching at HLA-A, -B, and -DRB1 as a risk factor of schizophrenia. We used a conditional-likelihood modeling approach with a sample of 274 families that had at least one offspring with schizophrenia or a related spectrum disorder. A statistically significant HLA-B maternal-fetal genotype-matching effect on schizophrenia was demonstrated for female offspring (P=.01; parameter estimate 1.7 [95% confidence interval 1.22-2.49]). Because the matching effect could be associated with pregnancy complications rather than with schizophrenia per se, these findings are consistent with the neurodevelopmental hypothesis of schizophrenia and with accumulating evidence that the prenatal period is involved in the origins of this disease. Our approach demonstrates how genetic markers can be used to characterize the biology of prenatal risk factors of schizophrenia.  相似文献   

8.
The recent development of high-resolution DNA microarrays, in which hundreds of thousands of single nucleotide polymorphisms (SNPs) are genotyped, enables the rapid identification of susceptibility genes for complex diseases. Clusters of these SNPs may show runs of homozygosity (ROHs) that can be analyzed for association with disease. An analysis of patients whose parents were first cousins enables the search for autozygous segments in their offspring. Here, using the Affymetrix® Genome-Wide Human SNP Array 5.0 to determine ROHs, we genotyped 9 individuals with schizophrenia (SCZ) whose parents were first cousins. We identified overlapping ROHs on chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, and 21 in at least 3 individuals. Only the locus on chromosome 5 has been reported previously. The ROHs on chromosome 5q23.3–q31.1 include the candidate genes histidine triad nucleotide binding protein 1 (HINT1) and acyl-CoA synthetase long-chain family member 6 (ACSL6). Other overlapping ROHs may contain novel rare recessive variants that affect SCZ specifically in our samples, given the highly heterozygous nature of SCZ. Analysis of patients whose parents are first cousins may provide new insights for the genetic analysis of psychiatric diseases.  相似文献   

9.
According to the theory of mate choice based on heterozygosity, mates should choose each other in order to increase the heterozygosity of their offspring. In this study, we tested the 'good genes as heterozygosity' hypothesis of mate choice by documenting the mating patterns of wild Atlantic salmon (Salmo salar) using both major histocompatibility complex (MHC) and microsatellite loci. Specifically, we tested the null hypotheses that mate choice in Atlantic salmon is not dependent on the relatedness between potential partners or on the MHC similarity between mates. Three parameters were assessed: (i) the number of shared alleles between partners (x and y) at the MHC (M(xy)), (ii) the MHC amino-acid genotypic distance between mates' genotypes (AA(xy)), and (iii) genetic relatedness between mates (r(xy)). We found that Atlantic salmon choose their mates in order to increase the heterozygosity of their offspring at the MHC and, more specifically, at the peptide-binding region, presumably in order to provide them with better defence against parasites and pathogens. This was supported by a significant difference between the observed and expected AA(xy) (p = 0.0486). Furthermore, mate choice was not a mechanism of overall inbreeding avoidance as genetic relatedness supported a random mating scheme (p = 0.445). This study provides the first evidence that MHC genes influence mate choice in fish.  相似文献   

10.
Parentage studies often estimate the number of parents contributing to half-sib progeny arrays by counting the number of alleles attributed to unshared parents. This approach is compromised when an offspring has the same heterozygous genotype as the shared parent, for then the contribution of the unshared parent cannot be unambiguously deduced. To determine how often such cases occur, formulae for co-dominant markers with n alleles are derived here for Ph, the probability that a given heterozygous parent has an offspring with the same heterozygous genotype, and Pa, the probability that a randomly chosen offspring has the same heterozygous genotype as the shared parent. These formulae have been derived assuming Mendelian segregation with either (1) an arbitrary mating system, (2) random mating or (3) mixed mating. The maximum value of Pa under random mating is 0.25 and occurs with any two alleles each at a frequency of 0.5. The behaviour with partial selfing (where reproduction is by selfing with probability s, and random mating otherwise) is more complex. For n < or = 3 alleles, the maximum value of Pa occurs with any two alleles each at a frequency of 0.5 if s < 0.25, and with three equally frequent alleles otherwise. Numerically, the maximum value of Pa for n > or = 4 alleles occurs with n* < or = n alleles at equal frequencies, where the maximizing number of alleles n* is an increasing function of the selfing rate. Analytically, the maximum occurs with all n alleles present and equally frequent if s > or = 2/3. In addition, the potential applicability of these formulae for evolutionary studies is briefly discussed.  相似文献   

11.
Extrapair mating strategies are common among socially monogamous birds, but vary widely across ecological and social contexts in which breeding occurs. This variation is thought to reflect a compromise between the direct costs of mates' extrapair behavior and indirect benefits of extrapair fertilizations (EPF) to offspring fitness. However, in most free-living populations, the complete spatial and temporal distribution of mating attempts, genetic characteristics of available mates, and their relative contribution to EPF strategies are difficult to assess. Here we examined prevalence of EPF in relation to breeding density, synchrony, and genetic variability of available mates in a wild population of house finches Carpodacus mexicanus where all breeding attempts are known and all offspring are genotyped. We found that 15% of 59 nests contained extra-pair offspring and 9% of 212 offspring were sired by extra-pair males. We show experimentally that paired males and females avoided EPF displays in the presence of their social partners, revealing direct selection against EPF behavior. However, at the population level, the occurrence of EPF did not vary with nests dispersion, initiation date, synchrony, or with distance between the nests of extrapair partners. Instead, the occurrence of EPF closely covaried with genetic relatedness of a pool of available mates and offspring of genetically dissimilar mating tended to be resistant to a novel pathogen. These results corroborate findings that, in this population, strong fitness benefits of EPF are specific to each individual, thus highlighting the ecological, social, and genetic contingency of costs and benefits of an individual's extrapair behaviors.  相似文献   

12.
Silene vulgaris is a gynodioecious plant native to Eurasia and now found throughout much of North America. Using hermaphrodite plants from three geographic regions (Stamford, NY; Broadway,VA; and Giles Co., VA) and four local populations within each region, we employed a hierarchical crossing design to explore the geographic structure of sex determining genes. Sex determination in this species is cytonuclear involving multiple cytoplasmic male sterility and nuclear restorer loci. Due to dominance effects within nuclear restorer loci, self-fertilization of hermaphrodites heterozygous at restorer loci should produce some homozygous recessive female offspring. Female offspring may also result from outcrossing among related individuals. At greater geographic and genetic distances, mismatches between cytoplasmic and nuclear sex determining genes should also produce high frequencies of female offspring if coevolution between cytoplasmic and nuclear sex determining alleles occurs independently among widely separated populations. We found evidence of dominance effects among nuclear restorer loci but no evidence of nuclear-cytoplasmic mismatches at the regional level. Of 63 maternal lines, 55 produced at least one female offspring when self-fertilized. Outcrossing within populations produced significantly fewer female offspring than self-fertilization. Outcrossing among regions produced the lowest proportion of female offspring, significantly fewer than outcrossing among populations within regions. Regions responded differently to among-region outcrossing with pollen donors from the two Virginia regions producing far fewer female offspring with New York dams than crosses among New York populations. These results indicate that nuclear restoration is complex, involving multiple loci with epistatic interactions and that most hermaphrodites in nature are heterozygous at one or more restorer locus. Further, regional differences in restorer frequencies indicate significant genetic structure for sex determining genes at large geographic scales, perhaps reflecting invasion history.  相似文献   

13.
A biased operational sex ratio (OSR) can have multiple, confounding effects on reproductive fitness. A biased OSR can increase harassment and mating activity directed towards potential mates but may also increase the ability of potential mates to choose a good partner if lower quality mates are screened out through competitive interactions. Additionally, a biased OSR may affect reproductive fitness through changes in male ejaculate content or in female reproductive response. We quantified how a male-biased OSR (1:1, 2:1, or 5:1 male to female) affected the size of a female??s first egg clutch and her offspring??s survivorship in the housefly, Musca domestica. A male-biased OSR increased female fitness: females laid more eggs in their first clutch, had increased offspring survivorship at a 2:1 versus 1:1 OSR, and had equivalent fitness with a 5:1 male to female OSR. Courtship activity increased when the OSR was male-biased but was not a significant predictor of female fitness. Trials where females chose their mates versus trials where a random male was chosen for them had equivalent first clutch sizes and offspring survivorship. These results suggest that there are cryptic effects from a male-biased OSR on female fitness that are most likely driven by pre-copulatory social environment.  相似文献   

14.
Females of many organisms mate more than once and with more than one male, suggesting that polyandry confers some advantage to the female or her offspring. However, variation in maternal investment in response to mate choice and mate number can confound efforts to determine if there are benefits of polyandry. Access to multiple mates could increase maternal investment in offspring via a number of different mechanisms. Few studies have determined if investment is influenced by mate choice and number, and data are particularly lacking for marine invertebrates. This study was designed to determine if maternal investment and offspring size increase with access to increasing numbers of mates in the protandrous intertidal slipper snail Crepidula cf. marginalis. Virgin female slipper limpets were exposed to one, three, or five potential mates and their fecundity, egg size, and hatchling size were measured for multiple clutches. Treatment had a significant effect on fecundity, with fecundity increasing with the number of potential mates. Treatment did not have an effect on the size of eggs or hatchlings, on the variation in egg size or hatchling size within broods, or on the frequency of oviposition. Treatment did alter the variation in average offspring size among females, but not in the way predicted by theory. The main result, that access to multiple mates does not have an effect on per offspring maternal investment, makes C. cf. marginalis an ideal candidate to study the effects of polyandry on offspring fitness without having to take into account confounding effects of variation in maternal investment.  相似文献   

15.
The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.  相似文献   

16.
Morgan MT 《Heredity》2002,89(4):253-257
Here I develop the idea that ubiquitous harmful genome-wide mutation with local differentiation favors dispersal, even though migration reduces average fitness. Historical contingency of the mutational process means that demes (sub-populations) differentiate from one another. Deleterious or lethal partially recessive mutations carried by migrants then do not encounter similar mutations in the recipient deme. Migrant offspring have higher fitness than offspring of residents, because migrant offspring are heterozygous rather than homozygous for harmful mutations. The advantage is inversely related to local inbreeding depression. Genome-wide deleterious mutation favors the evolution of dispersal, which in turn enhances the genetic integrity of the species.  相似文献   

17.
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.  相似文献   

18.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

19.
Monitoring changes in rare, recessive allele frequencies in natural populations can be accomplished using pedigreed individuals sampled from these populations. A pedigree keeps track of and limits the mating of sampled individuals, to preserve information about the genotype of the sampled individual in the phenotypes of its descendents. To estimate allele frequencies in a natural population using pedigreed crosses, four relations must be specified: (1) a method to determine whether the pedigreed line carries the desired allele; (2) a method to estimate the phenotypic frequency of the trait among the pedigreed lines and a credibility limit for the estimate; (3) the genetic relation between the phenotype frequency among the lines and the allele frequency in the natural population; and (4) a method to estimate the probability that the first method did not detect the trait, assuming that the allele was present in the sampled individual. Knowledge about the segregation patterns of the allele enables specification of (3) and (4). Bayesian statistics were used to estimate the phenotypic frequency of the trait among the pedigreed lines. The method determining whether the pedigreed line carries the desired allele will vary with the species and trait of concern. We focused on monitoring of vGm1, a recessive autosomal allele, and vGm2, a recessive sex‐linked allele, which provide virulence against certain rice resistance genes in rice gall midge, Orseolia oryzae (Wood‐Mason) (Diptera: Cecidomyiidae). We show how three pedigrees can be used to estimate these allele frequencies. An F1 field screen challenges the F1 offspring of sampled individuals on the rice differentials. A P1 test‐cross mates the sampled individual with a homozygous lab colony for the allele of interest, and evaluates their offspring on the rice differentials. A conditional F1 test‐cross takes the offspring from pedigrees that were negative in an F1 field screen, and test‐crosses these offspring with the homozygous laboratory colony. We also indicate how to test for independent assortment when a double (or multiple) homozygote laboratory colony is used in a test‐cross, how to test for differences among samples, and how to pool data to produce a single estimate based on a larger number of pedigreed lines. These methods may encourage the development of a variety of pedigreed monitoring strategies that could improve and prolong the use of scarce plant resistance alleles in rice and other plants.  相似文献   

20.
Sexual conflict between males and females over mating is common. Females that copulate with extrapair mates outside the pair-bond may gain (i) direct benefits such as resources or increased paternal care, (ii) indirect genetic benefits for their offspring, or (iii) insurance against infertility in their own social mate. Few studies have been able to demonstrate the different contexts in which females receive varying types of benefits from extrapair mates. Here, I examined sexual conflict, female extrapair mate choice, and patterns of extrapair paternity in the cooperatively breeding superb starling Lamprotornis superbus using microsatellite markers. Although extrapair paternity was lower than many other avian cooperative breeders (14% of offspring and 25% of nests), females exhibited two distinct mating patterns: half of the extrapair fertilizations were with males from inside the group, whereas half were with males from outside the group. Females with few potential helpers copulated with extrapair mates from within their group and thereby gained direct benefits in the form of additional helpers at the nest, whereas females paired to mates that were relatively less heterozygous than themselves copulated with extrapair mates from outside the group and thereby gained indirect genetic benefits in the form of increased offspring heterozygosity. Females did not appear to gain fertility insurance from copulating with extrapair mates. This is the first study to show that individuals from the same population mate with extrapair males and gain both direct and indirect benefits, but that they do so in different contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号