首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both genetic and epigenetic alterations of tumor suppressor and tumor-related genes involved in the pathogenesis of gastric cancer are reviewed here, and molecular pathways of gastric carcinogenesis are proposed. Gastric carcinomas are believed to evolve from native gastric mucosa or intestinal metaplastic mucosa that undergoes genetic and epigenetic alterations involving either the suppressor pathway (defects in tumor suppressor genes) or mutator pathway (defects in DNA mismatch repair genes). Methylation of E-cadherin in native gastric mucosa results in undifferentiated carcinomas (suppressor pathway), while methylation of hMLHI results in differentiated foveolar-type carcinomas (mutator pathway). The majority of differentiated gastric carcinomas however, arise from intestinal metaplastic mucosa and exhibit structural alterations of tumor suppressor genes, especially p53. They appear to be related to chronic injury, perhaps due to Helicobacter pylori infection. Approximately 20% of differentiated carcinomas (ordinary-type) have evidence of mutator pathway tumorigenesis. Mutations of E-cadherin are mainly involved in the progression of differentiated carcinomas to undifferentiated tumors. The molecular pathways of gastric carcinogenesis depend on the histological background, and gastric carcinomas show distinct biological behaviors as a result of discernible cellular genetic and epigenetic alterations.  相似文献   

3.
Mutant KRAS in the initiation of pancreatic cancer   总被引:5,自引:0,他引:5  
Pancreatic ductal adenocarcinoma is the most common pancreatic neoplasm. There are approximately 33,000 new cases of pancreatic ductal adenocarcinoma annually in the United States with approximately the same number of deaths. Surgery represents the only opportunity for cure, but this is restricted to early stage pancreatic cancer. Pancreatic ductal adenocarcinoma evolves from a progressive cascade of cellular, morphological and architectural changes from normal ductal epithelium through preneoplastic lesions termed pancreatic intraepithelial neoplasia (PanIN). These PanIN lesions are in turn associated with somatic alterations in canonical oncogenes and tumor suppressor genes. Most notably, early PanIN lesions and almost all pancreatic ductal adenocarcinomas involve mutations in the K-ras oncogene. Thus, it is believed that activating K-ras mutations are critical for initiation of pancreatic ductal carcinogenesis. This has been proven through elegant genetically engineered mouse models in which a Cre-activated K-Ras(G12D) allele is knocked into the endogenous K-Ras locus and crossed with mice expressing Cre recombinase in pancreatic tissue. As a result, mechanistic insights are now possible into how K-Ras contributes to pancreatic ductal carcinogenesis, what cooperating events are required, and armed with this knowledge, new therapeutic approaches can be pursued and tested.  相似文献   

4.
Molecular pathogenesis of pancreatic cancer: advances and challenges   总被引:4,自引:0,他引:4  
Pancreatic ductal adenocarcinoma (PDAC) is still a devastating and incurable disease with a median survival of 3-6 months and a 5-year survival rate of 1-4% when all stages are considered. Although crucial advances in our understanding of the molecular pathogenesis of the disease have been made, the exceptional aggressiveness of PDAC remains largely unexplained. Some key results will probably direct future PDAC research activities. For example, recent identification of pancreatic tumor stem cells has stimulated the debate over the cell of origin. Further, powerful new genetically engineered mouse models support the concept that stepwise progression of epithelial precursor lesions leads to invasive PDAC as a result of accumulating mutations in K-ras, INK4A/ARF, TP53 and DPC4; these models accentuate the initiating function of the K-ras mutation. Established PDAC exhibits all the classic hallmarks of cancer, including self-sufficiency in growth signals, insensitivity to anti-growth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion, and metastasis. This review provides an overview of the molecular machinery that PDAC utilizes to acquire these tumorigenic capacities. Moreover, recent advances have identified essential elements of key pathways partly recapitulating developmental signals, and of the tumor microenvironment that promotes tumor growth through the complex interplay of its different cellular components. In spite of progress in molecular research, there is still a dichotomy between the encouraging results obtained with targeted interference of numerous oncogenic pathways in vitro and a lack of significant improvement in clinical detection and survival. Thus our primary challenge remains to translate the solid knowledge of genetic and epigenetic alterations in PDAC into clinical tools which can be used for early diagnosis and effective therapy.  相似文献   

5.
Histone modifications as a platform for cancer therapy   总被引:8,自引:0,他引:8  
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.  相似文献   

6.
Lack of early detection and effective interventions is a major reason for the poor prognosis and dismal survival rates for pancreatic cancer. Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor of invasive pancreatic ductal adenocarcinoma (PDAC). Each stage in the progression from PanIN to PDAC is well characterized by multiple significant genetic alterations affecting signaling pathways. Understanding the biological behavior and molecular alterations in the progression from PanIN to PDAC is crucial to the identification of noninvasive biomarkers for early detection and diagnosis and the development of preventive and therapeutic strategies for control of pancreatic cancer progression. This review focuses on molecular biomarkers of PanIN and their important roles in early detection and treatment of pancreatic cancer.  相似文献   

7.
8.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease characterized by late diagnosis and treatment resistance. Recurrent genetic alterations in defined genes in association with perturbations of developmental cell signaling pathways have been associated with PDAC development and progression. Here, we show that GATA6 contributes to pancreatic carcinogenesis during the temporal progression of pancreatic intraepithelial neoplasia by virtue of Wnt pathway activation. GATA6 is recurrently amplified by both quantitative-PCR and fluorescent in-situ hybridization in human pancreatic intraepithelial neoplasia and in PDAC tissues, and GATA6 copy number is significantly correlated with overall patient survival. Forced overexpression of GATA6 in cancer cell lines enhanced cell proliferation and colony formation in soft agar in vitro and growth in vivo, as well as increased Wnt signaling. By contrast siRNA mediated knockdown of GATA6 led to corresponding decreases in these same parameters. The effects of GATA6 were found to be due to its ability to bind DNA, as forced overexpression of a DNA-binding mutant of GATA6 had no effects on cell growth in vitro or in vivo, nor did they affect Wnt signaling levels in these same cells. A microarray analysis revealed the Wnt antagonist Dickopf-1 (DKK1) as a dysregulated gene in association with GATA6 knockdown, and direct binding of GATA6 to the DKK1 promoter was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Transient transfection of GATA6, but not mutant GATA6, into cancer cell lines led to decreased DKK1 mRNA expression and secretion of DKK1 protein into culture media. Forced overexpression of DKK1 antagonized the effects of GATA6 on Wnt signaling in pancreatic cancer cells. These findings illustrate that one mechanism by which GATA6 promotes pancreatic carcinogenesis is by virtue of its activation of canonical Wnt signaling via regulation of DKK1.  相似文献   

9.
DNA methylation of nuclear receptor genes--possible role in malignancy   总被引:2,自引:0,他引:2  
The members of the nuclear receptor superfamily are known to mediate a wide array of basic biological processes, such as regulation of cell growth and differentiation, and induction of apoptosis. In several human malignancies, this central control function of nuclear receptors is disturbed, which seems to play an important role in tumor development and progression. Many nuclear receptor genes have been reported to be downregulated in malignancies; however, only a few mutations, gene arrangements, deletions or similar genetic changes have been shown to occur in these tumors.During the last decade, increasing attention has been directed towards epigenetic mechanisms of gene regulation such as DNA methylation. Many nuclear receptor genes can be silenced through aberrant methylation in tumors; epigenetic silencing, therefore, represents an additional mechanism that modifies expression of key genes during carcinogenesis.This review will give insights into the role of DNA methylation in the silencing of nuclear receptor genes and its involvement in human malignancies.  相似文献   

10.
A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.  相似文献   

11.
Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMNs). Our immunohistochemistry (IHC) studies have shown a consensus position on mucin expression profiles in pancreatic neoplasms as follows: MUC1-positive but MUC2-negative expression in PDACs; MUC1-negative but MUC2-positive expression in intestinal-type IPMNs (dangerous type); MUC1-negative and MUC2-negative expression in gastric-type IPMNs (safe type); High MUC4 expression in PDAC patients with a poor outcome; and MUC4-positive expression in intestinal-type IPMNs. We also showed that three mucin genes (MUC1, MUC2 and MUC4) expression in cancer cell line was regulated by DNA methylation. We have developed a novel ‘methylation-specific electrophoresis (MSE)’ method to analyze the DNA methylation status of mucin genes by high sensitivity and resolution. By using the MSE method, we evaluated pancreatic juice samples from 45 patients with various pancreatic lesions. The results were compared with final diagnosis of the pancreatic lesions including IHC of mucin expression in the paired pancreatic tissues. The results indicated that the DNA methylation status of MUC1, MUC2 and MUC4 in pancreatic juice matched with the mucin expression in tissue. Analyses of the DNA methylation status of MUC1, MUC2 and MUC4 were useful for differential diagnosis of human pancreatic neoplasms, with specificity and sensitivity of 87% and 80% for PDAC; 100% and 88% for intestinal-type IPMN; and 88% and 77% for gastric-type IPMN, respectively. In conclusion, MSE analysis of human pancreatic juice may provide useful information for selection of treatment for pancreatic neoplasms.  相似文献   

12.
ABSTRACT: Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.  相似文献   

13.
14.
The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs.  相似文献   

15.
Activating mutations in the KRAS proto-oncogene occur almost ubiquitously in pancreatic ductal adenocarcinoma (PDAC) and in its putative precursor lesions, pancreatic intraepithelial neoplasia (PanIN). Conditional expression of an activated Kras allele in the mouse pancreas produces a model that faithfully recapitulates PanIN formation and progression to PDAC. Importantly, although nearly every cell in the pancreata of these mice express activated Kras, only a very small minority of cells give rise to PanINs. How the transforming activity of Kras is constrained in the pancreas remains unknown, and the cell types from which PanINs and PDAC arise are similarly unknown. Here, we describe our recent results demonstrating that acinar cells are competent to form Kras-induced PanINs, and that active Notch signaling can synergize with Kras in PanIN initiation and progression. Further efforts to understand how Notch and Kras synergize, as well as experiments to determine how other pancreatic cell types contribute to PDAC development, should aid in the development of new therapies and early detection techniques that are desperately needed for this cancer.  相似文献   

16.
Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancerassociated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies.  相似文献   

17.
18.
19.
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and has devastating consequences on affected families and society. Its dismal prognosis is attributed to poor specificity of symptoms during early stages. It is widely believed that PDAC patients with the wildtype (WT) KRAS gene benefit more from currently available treatments than those with KRAS mutations. The oncogenic genetic changes alternations generally found in KRAS wildtype PDAC are related to either the KRAS pathway or microsatellite instability/mismatch repair deficiency (MSI/dMMR), which enable the application of tailored treatments based on each patient's genetic characteristics. This review focuses on targeted therapies against alternative tumour mechanisms in KRAS WT PDAC.  相似文献   

20.
Park JJ  Kang JK  Hong S  Ryu ES  Kim JI  Lee JH  Seo JS 《Gene》2008,407(1-2):139-147
Copy number changes and DNA methylation alterations are crucial to gene regulation in mammals. Recently, a number of microarray studies have been based on copy number and DNA methylation alterations in order to find clinical biomarkers of carcinogenesis. In this study, we attempted to combine profiles of copy number and methylation patterns in four human cancer cell lines using BAC microarray-based approaches and we detected several clinically important genes which showed genetic and epigenetic relationships. Within the clones analyzed, many contained cancer-related genes involved in cell cycle regulation, cell division, signal transduction, tumor necrosis, cell differentiation, and cell proliferation. One clone included the FHIT gene, a well-known tumor suppressor gene involved in various human cancers. Our combined profiling techniques may provide a method by which to find new clinicopathologic cancer biomarkers, and support the idea that systematic characterization of the genetic and epigenetic events in cancers may rapidly become a reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号