首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH box protein family and designated as a putative RNA helicase. RIG-I is implicated in host defense and inflammatory reactions by regulating the expression of various genes. RIG-I is expressed in endothelial cells and upregulated with lipopolysaccharide (LPS). Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a nuclear hormone receptor and regulates gene expressions in response to its specific ligands. In the present study, we examined the effect of PPAR-gamma ligands on the LPS-induced RIG-I expression in cultured human umbilical vein endothelial cells (HUVEC). 15-Deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), a metabolite of PGD2, is a natural ligand for PPAR-gamma and known to modulate inflammatory reactions by regulating the expression of various genes in PPAR-gamma-dependent and -independent manners. LPS-induced RIG-I expression in HUVEC was inhibited by pretreatment of the cells with 15d-PGJ2 in time-and concentration-dependent manners. However, ciglitazone and bisphenol A diglycide ether, authentic and specific ligands for PPAR-gamma, did not affect the RIG-I expression. These results suggest that 15d-PGJ2 inhibits LPS-induced RIG-I expression through a mechanism independent on PPAR-gamma. 15d-PGJ2 may regulate inflammatory reactions, at least in part, by inhibiting the expression of RIG-I.  相似文献   

4.
5.
6.
7.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-12,14-PGJ2 (15d-PGJ2), have been proposed as a new class of anti-inflammatory compounds because 15d-PGJ2 was able to inhibit the induction of inflammatory response genes such as inducible NO synthase (iNOS) and TNF (TNF-alpha) in a PPAR-dependent manner in various cell types. In primary astrocytes, the anti-inflammatory effects (inhibition of TNF-alpha, IL-1beta, IL-6, and iNOS gene expression) of 15d-PGJ2 are observed to be independent of PPARgamma. Overexpression (wild-type and dominant-negative forms) of PPARgamma and its antagonist (GW9662) did not alter the 15d-PGJ2-induced inhibition of LPS/IFN-gamma-mediated iNOS and NF-kappaB activation. The 15d-PGJ2 inhibited the inflammatory response by inhibiting IkappaB kinase activity, which leads to the inhibition of degradation of IkappaB and nuclear translocation of p65, thereby regulating the NF-kappaB pathway. Moreover, 15d-PGJ2 also inhibited the LPS/IFN-gamma-induced PI3K-Akt pathway. The 15d-PGJ2 inhibited the recruitment of p300 by NF-kappaB (p65) and down-regulated the p300-mediated induction of iNOS and NF-kappaB luciferase reporter activity. Coexpression of constitutive active Akt and PI3K (p110) reversed the 15d-PGJ2-mediated inhibition of p300-induced iNOS and NF-kappaB luciferase activity. This study demonstrates that 15d-PGJ2 suppresses inflammatory response by inhibiting NF-kappaB signaling at multiple steps as well as by inhibiting the PI3K/Akt pathway independent of PPARgamma in primary astrocytes.  相似文献   

8.
A natural ligand of peroxisome proliferator-activated receptor gamma (PPARgamma), 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ(2)-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ(2) decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPARgamma with no effect on mRNA levels. Although 15d-PGJ(2) elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ(2) induced HSP70 in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ(2) increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ(2) is related to HSP70 induction.  相似文献   

9.
10.
11.
PPARgamma ligands inhibit growth and induce apoptosis of various cancer cells. 4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation and induces differentiation or apoptosis in neoplastic cells. The aim of this work was to investigate the effects of PPARgamma ligands (rosiglitazone and 15-deoxy-prostaglandin J2 (15d-PGJ2)) and HNE, alone or in association, on proliferation, apoptosis, differentiation, and growth-related and apoptosis-related gene expression in colon cancer cells (CaCo-2 cells). PPARgamma ligands inhibited cell proliferation (IC50 was 37.47+/-6.6 microM, for 15d-PGJ2, and 170.34+/-20 microM for rosiglitazone). HNE (1 microM) inhibited cell growth by 70%. Apoptosis was induced by 15d-PGJ2 and HNE and, to a minor extent, rosiglitazone. Differentiation was induced by rosiglitazone and by 15d-PGJ2, but not by HNE. PPARgamma ligands inhibited c-myc expression. HNE induced a transitory increase in c-myc expression and a subsequent down-regulation. HNE induced p21 expression, whereas PPARgamma ligands did not. Expression of the bax gene was increased by HNE and 15d-PGJ2, but not by rosiglitazone. No synergism or antagonism was found between HNE and PPARgamma ligands. Both apoptosis and differentiation induction may be responsible for the inhibition of proliferation by PPARgamma ligands; apoptosis and c-myc and p21 expression seem to be involved in the inhibition of proliferation by HNE.  相似文献   

12.
13.
A peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been reported to possess anti-inflammatory activity in activated monocytes/macrophages. In this study, we investigated the effect of 15d-PGJ(2) on the lipopolysaccharide (LPS)-induced expression of chemokine mRNAs, especially macrophage inhibitory protein (MIP)-2 (CXCL2), in mouse peritoneal macrophages. The inhibitory actions of the natural PPARgamma ligands, 15d-PGJ(2) and prostaglandin A1 (PGA1), on the expression of RANTES (regulated upon activation, normal T expressed and secreted; CCL5), MIP-1beta (CCL4), MIP-1alpha (CCL3), IFN-gamma-inducible protein 10 kilodaltons (IP-10; CXCL10) and monocyte chemoattractant protein-1 (MCP-1; CCL2) mRNA in LPS-treated cells were stronger than those of the synthetic PPARgamma ligands troglitazone and ciglitazone. However, 15d-PGJ(2) enhanced the expression of LPS-induced MIP-2 (CXCL2) mRNA. A specific PPARgamma antagonist (GW9662) had no effect on the inhibitory action of 15d-PGJ(2) and PGA1 in LPS-induced chemokine mRNA expression and on the synergistic action of 15d-PGJ(2) in LPS-induced MIP-2 (CXCL2) expression. Moreover, LPS itself reduced the expression of PPARgamma. Although the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was remarkable, the production of MIP-2 (CXCL2) in cells treated with 15d-PGJ(2) and LPS did not increase compared to the production in cells treated with LPS alone. The synergistic action of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was dependent on the activation of nuclear factor-kappaB (NF-kappaB), and 15d-PGJ(2) increased the phosphorylation of p38 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in cells stimulated with LPS. These results suggest that the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) expression is PPARgamma-independent, and is mediated by the p38 and SAPK/JNK pathway in mitogen-activated protein kinase signaling pathways, which activates NF-kappaB. Our data may give more insights into the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2) on the expression of chemokine genes.  相似文献   

14.
15.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit the production and the effects of proinflammatory cytokines. Since interleukin-1beta (IL-1beta) directly mediates cartilage degradation in osteoarthritis, we investigated the capability of PPARgamma ligands to modulate IL-1beta effects on human chondrocytes. RT-PCR and Western blot analysis revealed that PPARgamma expression was decreased by IL-1beta. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), in contrast to troglitazone, was highly potent to counteract IL-1beta-induced cyclooxygenase-2 and inductible nitric oxide synthase expression, NO production and the decrease in proteoglycan synthesis. Western blot and gel-shift analyses demonstrated that 15d-PGJ2 inhibited NF-kappaB activation, while troglitazone was ineffective. Although 15d-PGJ2 attenuated activator protein-1 binding on the DNA, it potentiated c-jun migration in the nucleus. The absence or the low effect of troglitazone suggests that 15d-PGJ2 action in human chondrocytes is mainly PPARgamma-independent.  相似文献   

16.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

17.
Smad2 is an important factor in TGFbeta/Smad2 signal transduction pathway with ability for signal propagation, it could translocate from cytoplasm to nucleus after the TGFbeta receptor-mediated phosphorylation. 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural agonist of the peroxisome proliferator-activated receptor gamma (PPARgamma), is found recently to be able to function in the regulation of Smad2 activity. However, no quantification data have been yet reported, and it still keeps suspenseful whether or not 15d-PGJ2 could regulate Smad2 activity by depending on PPARgamma through PPAR gamma/TGFbeta/ Smad2 pathway. In this work, by analyzing the EGFP-Smad2 location in CHO cells according to the Nucleus Trafficking Analysis Module based on IN Cell Analyzer 1000 platform, TGFbeta stimulated EGFP-Smad2 translocation regulated by 15d-PGJ2 was quantitatively investigated. The results showed that TGFbeta could induce EGFP-Smad2 translocation from cytoplasm to nucleus by EC50 of 8.83 pM, and 15d-PGJ2 could impede the TGFbeta-stimulated Smad2 translocation by IC50 of 0.68 microM. Moreover, GW9662, a PPARgamma antagonist, could attenuate such a 15d-PGJ2 inhibitory activity by almost one order of magnitude. This result thereby implies that 15d-PGJ2 might inhibit Smad2 translocation through PPARgamma/TGFbeta/Smad2 pathway. Further investigation discovered that different from the case for 15d-PGJ2, rosiglitazone, another PPARgamma agonist, could enhance Smad2 translocation to nucleus, suggesting that rosiglitazone and 15d-PGJ(2) might take different modes in the activation of PPARgamma within the signaling pathway.  相似文献   

18.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号