首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine possible changes in cell surface carbohydrates, fluorescent lectins were applied at various times during differentiation of neural crest cells in vitro. The pattern and intensity of binding of several lectins changed as the crest cells developed into melanocytes and adrenergic cells. Considerable amounts of concanavalin A (Con A) and wheat germ agglutinin (WGA) bound to all unpigmented cells throughout the culture period. Melanocytes, however, bound much less of these lectins. Soy bean agglutinin (SBA), unlike Con A and WGA, only bound later in development to unpigmented cells at about the time when catecholamines were detected histochemically. Binding of SBA could be induced in younger cultures by pretreating the cells with neuraminidase. Melanocytes, however, did not bind detectable amounts of SBA even if treated with neuraminidase. The SBA-binding sites were often concentrated on cytoplasmic extensions and on contact points between neighboring cells, even when receptor mobility was restricted by prefixation of the cells or adsorption of lectin at 0 degrees C. All three lectins bound to cell processes resembling nerve fibers in particularly high amounts.  相似文献   

2.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

3.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The inhibition of adhesion between aggregates and layers of embryonic retinal cells by concanavalin A (Con A) and Con A-mediated rearrangements of Con A receptors on retinal cells were studied. A short incubation of aggregates and layers with 10 micrograms/ml Con A substantially reduced aggregate-to-layer adhesion in a subsequent assay without soluble lectin present. This effect of Con A was dose-dependent, temperature-sensitive, involved events subsequent to Con A binding, and was reduced by cytochalasin B. The inhibition produced by succinylated Con A was substantially increased by incubation with antibody to Con A. Visualization of ConA- receptor complexes by fluorescence microscopy revealed that binding of Con A induced clearing of Con A receptors from filopodia, flattened regions of growth cones, and the edges of axons. This clearing reaction was prevented by the same agents that reduced Con A's inhibition of cell adhesion: low temperature, succinylation of Con A, or cytochalasin B. Aggregate-layer adhesion was restored by releasing Con A at 37 degrees C. Inhibitors of protein and ATP synthesis did not prevent recovery of ability to make adhesions. However, release of Con A at lowered temperatures did not prevent recovery. The results suggest that intercellular adhesion is inhibited by events associated with redistribution of Con A-receptor complexes on retinal cells.  相似文献   

5.
Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
为进一步探讨从生殖细胞到精子的发育过程中细胞质膜表面凝集素受体的可能变化,及其与两类对凝集素标记有不同结果的精子的关系,用异硫氰酸荧光素标记的伴刀豆凝集素(Con A)、麦芽凝集素(WGA)和大豆凝集素(SBA)对蚕豆(Vicia faba L.)、鸢尾(Iris tectorium Maxim.)和朱顶红(Hippeastrum vittatum Herb.)的生殖细胞质膜表面的凝集素受体进行标记。结果显示:在不同植物中均有部分生殖细胞不能被凝集素探针标记,且在保持尾状形态的生殖细胞的表面发现有凝集素受体的极性分布。这可能是导致部分精子表面不能被同种凝集素标记的重要原因。此外,同一种凝集素受体在不同物种的生殖细胞上分布不一致,不同的凝集素受体在同一种植物的生殖细胞上的分布模式亦有不同。在蚕豆和鸢尾的生殖细胞表面均有这三种凝集素的受体。在朱顶红生殖细胞的表面有前两种凝集素的受体,分布比较均一,但是没有大豆凝集素的受体。此外,在具尾生殖细胞表面发现有凝集素受体极性分布的现象,为探讨精细胞功能及其表面糖蛋白分布的可能差异提供了重要启示。  相似文献   

7.
为进一步探讨从生殖细胞到精子的发育过程中细胞质膜表面凝集素受体的可能变化,及其与两类对凝集素标记有不同结果的精子的关系,用异硫氰酸荧光素标记的伴刀豆凝集素(Con A)、麦芽凝集素(WGA)和大豆凝集素(SBA)对蚕豆(Vicia faba L.)、鸢尾(Iris tectorium Maxim.)和朱顶红(Hippeastrum vittatum Herb.)的生殖细胞质膜表面的凝集素受体进行标记.结果显示:在不同植物中均有部分生殖细胞不能被凝集素探针标记,且在保持尾状形态的生殖细胞的表面发现有凝集素受体的极性分布.这可能是导致部分精子表面不能被同种凝集素标记的重要原因.此外,同一种凝集素受体在不同物种的生殖细胞上分布不一致,不同的凝集素受体在同一种植物的生殖细胞上的分布模式亦有不同.在蚕豆和鸢尾的生殖细胞表面均有这三种凝集素的受体.在朱顶红生殖细胞的表面有前两种凝集素的受体,分布比较均一,但是没有大豆凝集素的受体.此外,在具尾生殖细胞表面发现有凝集素受体极性分布的现象,为探讨精细胞功能及其表面糖蛋白分布的可能差异提供了重要启示.  相似文献   

8.
SYNOPSIS. Living, intact bloodstream trypomastigotes and culture procyclic forms of Trypanosoma congolense were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), wheat germ agglutinin (WGA), soybean agglutinin (SBA), and fucose binding protein (FBP). Similar experiments were conducted with living bloodstream and culture forms treated with trypsin or dextranase. Parasites were incubated for 30 min at 25 C in various concentrations of each lectin, then examined for agglutination by dark-field microscopy. Control preparations consisted of parasites incubated alone or with 0.5 M of the specific competing sugar, with or without the corresponding lectin. Electron-microscopic localization of lectin binding sites on the surface of intact and dextranase-treated bloodstream and intact culture forms was accomplished with Con A, reacted with horseradish peroxidase (HRP) and then diaminobenzidine (DAB). In addition, FBP and SBA were coupled to HRP, then utilized for the localization of binding saccharides on the surface of blood-stream forms by the DAB technic. Similar studies were conducted with culture procyclics incubated with WGA-, SBA, PP- or FBP-HRP conjugates and then reacted with DAB. Controls were utilized to confirm the sugar specificity of all positive reactions. Intact living bloodstream forms were agglutinated in a concentration-dependent manner with all the lectins tested. Agglutination levels were scored as Con A > FBP > WGA = PP = SBA. Sugars resembling α-D-mannose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, and α-L-fucose are evidently present on the surface of the parasites. No agglutination was noted in any control preparations. Identical lectin-induced agglutinations were obtained with trypsin- or dextranase-treated bloodstream forms. Trypsin disrupted but did not entirely remove the surface coat of bloodstream forms, while dextranase did not alter the ultrastructure of the parasites. Con A-, SBA- and FBP-binding saccharides were distributed uniformly on the surface coat of intact bloodstream forms; a similar distribution of Con A receptors was noted also on the surface of dextranase-treated cells. No lectin-binding saccharides were visualized by electron microscopy on any control preparations. Intact, trypsin- or dextranasetreated, procyclics were agglutinated in a concentration-dependent fashion by Con A and WGA, but not by the other lectins tested. Control preparations did not agglutinate and the enzymes did not affect the ultrastructure of the parasites. Con A- and WGA-specifically binding saccharides were uniformly distributed on intact procyclics and control preparations were lectin-negative. Thus, T. congolense procyclics retained surface saccharides resembling α-D-mannose and N-acetyl-D-glucosamine but lost sugars resembling N-acetyl-D-galactosamine (or D-galactose) and α-L-fucose. The failure of dextranase to remove the lectin-binding saccharides from the surface of bloodstream and procyclic forms suggests that α-1,6-glucan bonds do not link these carbohydrates. The results are contrasted with lectin research on other trypanosome species and discussed with relation to the biology of T. congolense.  相似文献   

9.
Summary Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair. The 16-day fetal tissue is mitotically active, does not exhibit a well defined monolayer, and demonstrates weak fluorescence binding for WGA, Con A and RCA. Conversely, SBA binding is readily detected on many cell surfaces. By 19 days in utero, the endothelial monolayers becomes organized and cell proliferation greatly diminishes. WGA, Con A and RCA now exhibit binding similar to that seen in the adult tissue. SBA binding is not detected at this time. Thus, changes in lectin binding during wound repair of the adult rat corneal endothelium mimic changes in lectin binding seen during the development of the tissue.Supported by grant EY-06435 from The National Institutes of Health  相似文献   

10.
Neurons seeded in culture as spherical cells flatten partially to form lamellipodia by which they adhere to the substratum. Lamellipodium formation is stimulated specifically by concanavalin A (Con A) and other mannose-binding lectins in several types of neuronal cells, but not in similarly treated fibroblasts. Conditions that block much of the adsorption of Con A to the substratum have no effect on stimulation of lamellipodium formation by Con A. This suggests that Con A acts in solution on neurons and does not directly bind them to their substrata. Succinylated-Con A (bivalent) binds to the same receptors as native Con A (tetravalent) but does not elicit lamellipodium extension unless crosslinked with anti-Con A IgG. Treatment of neurons with Con A produces local changes in the composition of the cell surface resulting from redistribution of lectin receptor complexes. This redistribution is not as great with SCon A and, like lamellipodium formation, is sensitive to the valency of Con A. A variety of treatments (4 degrees C, trifluoperazine, nordihydroguaiaretic acid, 4-bromphenacyl bromide, and cytochalasin D), inhibit both Con A-receptor redistribution and lamellipodium extension by neurons. Other treatments (colchicine and cycloheximide) prevented neither lamellipodium formation nor redistribution.  相似文献   

11.
Abstract. Conjugation in Tetrahymena is a cell interaction that involves the formation of pairs of cells of complementary mating types that are joined with opposite polarity at their anterior ends. Characteristically, it takes 1 h from the time cells are mixed until they begin to pair. We have previously shown that, during this time, the anterior tips of both mating types undergo morphogenetic transformation. The tips, which are normally pointed and ciliated, become truncated and cilia-free, and the cortical ridges disappear, leaving a smooth surface. We have also shown that the conjugation junction is formed during pairing by the apposition and alignment of two transformed surfaces. In the present study, we examined the binding of fluorescein-conjugated concanavalin A (F-Con A) in paraformalde-hyde-fixed cells at a stage when most cells have transformed tips but few are paired. We observed binding of Con A at anterior tips in a manner that was correlated with the extent of tip transformation. We further mapped the distribution of Con A receptors in conjugant pairs by orienting pairs with the plane of the junction perpendicular to the axis of illumination. It was observed that the distribution of Con A receptors formed a heart-shaped ring around the conjugation junction, in perfect accordance with the boundary line between the normal cortex and the transformed cortex. Additional experiments indicated that this binding pattern reflects the true distribution of receptors, suggesting that the receptors migrate from transformed tips to the junction ring in association with cell pairing. There is evidence that Con A receptors may have a function in cell adhesion in this system. Therefore, during this highly programmed cell interaction, the spatial redistribution of surface receptors and the morphological differentiation of the cell surface — both of wich may have a function in cell-cell attachment — are closely coordinated processes.  相似文献   

12.
Lectin binding patterns in ten mouse malignant fibrous histiocytoma (MFH)-like sarcomas containing eosinophilic globule (EG) cells and in granular metrial gland (GMG) cells of mouse placenta were stained with nine lectins (Con A, LCA, WGA, DBA, SBA, e-PHA, PNA, RCA-I and UEA-I) by an avidin-biotin-peroxidase-complex method. EG cells stained strongly with DBA, SBA and PNA which are specific for N-acetyl-D-galactosamine and/or D-galactose. DBA and SBA bound throughout the cytoplasm including the globules; PNA reacted preferentially at the cell surface. There was no evidence that these three lectins were reactive for immature EG cells. WGA, RCA-I and e-PHA also gave a slightly to moderately positive reaction to globules of EG cells. The results indicate that the globules contain abundant O-linked sequences of sugars, but also a few N-linked residues. MFH tumor cells showed a variable degree of binding with Con A, RCA-I, and WGA, but did not react with DBA, SBA and PNA. On the other hand, GMG cells exhibited specific affinities for DBA, SBA and PNA with staining patterns similar to those of EG cells. These findings suggest that EG and GMG cells may be of the same cellular lineage.  相似文献   

13.
Binding of Concanavalin A to mouse L cells which were grown in serum free, chemically defined medium and depleted of their membrane sterol by blocking their de novo sterol synthesis was investigated. Kinetic analysis of binding data implied positive cooperativity, with two different affinities for Con A, in both experimental and control cultures. The amount of Con A bound to the cell surface at saturation was approximately 0.5 picomoles per mg cellular protein in controls and approximately 1.0 picomoles per mg cellular protein in 25-hydroxycholesterol treated cultures (which had a reduced sterol concentration of up to 50% in their plasma membranes). This phenomenon was reversed when cholesterol or mevalonate was added to the inhibited cultures to compensate for their inability to synthesize sterol. Our findings indicate that lectin binding to specific glycoprotein receptors is influenced by membrane lipid composition.  相似文献   

14.
Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.  相似文献   

15.
The surface distribution of concanavalin A (Con A) bound to cell membrane receptors varies dramatically as a function of mitotic phase. The lectin is distributed diffusely on cells labeled and observed between mid-prophase and early anaphase, whereas cells observed in late anaphase or telophase demonstrate a marked accumulation of Con A- receptor complexes over the developing cleavage furrow (Berlin, Oliver, and Walter. 1978. Cell. 15:327-341). In this report, we first use a system based on video intensification fluorescence microscopy to describe the simultaneous changes in cell shape and in lectin-receptor complex topography during progression of single cells through the mitotic cycle. The video analysis establishes that fluorescein succinyl Con A (F-S Con A)-receptor complex redistribution begins coincident with the first appearance of the cleavage furrow and is essentially complete within 2-3 min. This remarkable redistribution of surface fluorescence occurs during only a modest change in cell shape from a sphere to a belted cylinder. It reflects the translocation of complexes and not the accumulation of excess labeled membrane in the cleavage furrow: first, bound fluorescent cholera toxin which faithfully outlines the plasma membrane is not accumulated in the cleavage furrow, and, second, electron microscopy of peroxidase-Con A labeled cells undergoing cleavage shows that there is a high linear density of lectin within the furrow while Con A is virtually eliminated from the poles. The rate of surface movement of F-S Con A was quantitated by photon counting during a repetitive series of laser-excited fluorescence scans across dividing cells. Results were analyzed in terms of two alternative models of movement: a flow model in which complexes moved unidirectionally at constant velocity, and a diffusion model in which complexes could diffuse freely but were trapped at the cleavage furrow. According to these models, the observed rates of accumulation were attainable at either an effective flow velocity of approximately 1 micron/min, or an effective diffusion coefficient of approximately 10(- 9) cm2/s. However, in separate experiments the lectin-receptor diffusion rate measured directly by the method of fluorescence recovery after photobleaching (FRAP) on metaphase cells was only approximately 10(-10) cm2/s. Most importantly, photobleaching experiments during the actual period of F-S Con A accumulation showed that lectin-receptor movement during cleavage occurs unidirectionally. These results rule out diffusion and make a process of oriented flow of ligand-receptor complexes the most likely mechanism for ligand-receptor accumulation in the cleavage furrow.  相似文献   

16.
A uniform electric field of 10 V/cm applied across the surface of embryonic toad Xenopus muscle cells results in the asymmetric accumulation of concanavalin A (Con A) receptors toward one side of the cells within 10 min, as visualized by postfield fluorescent Con A labeling. This field produces an extracellular voltage difference of 20 mV across these 20-microns wide cells. The effect is reversible in two respects: (a) Additional exposure of the cell to the same field of opposite polarity for 10 min completely reverses the asymmetric accumulation to the other side of the cell. (b) Relaxation occurs after the removal of the field and results in complete recovery of the uniform distribution in 30 min. Both the accumulation and the recovery movements are independent of cell metabolism, and appear to be electrophoretic and diffusional in nature. The threshold field required to induce a detectable accumulation by the present method is between 1.0 and 1.5 V/cm (corresponding to a voltage difference of 2-3 mV across a 20-microns wide cell). The electrophoretic mobility of the most mobile population of nonliganded Con A receptors is estimated to be about 2 x 10(-3) microns/s per V/cm, while their diffusion coefficient is in the range of 4-7 x 10(-10) cm2/s. Extensive accumulation of the Con A receptors by an electric field results in the formation of immobile aggregates. The Con A receptors appear to consist of a heterogeneous population of membrane components different in their charge properties, mobility, and capability in forming aggregates.  相似文献   

17.
Plasma membrane receptors are crucial for nonself tissue recognition. Using concanavalin A (Con A), wheat germ agglutinin, peanut agglutinin, soybean agglutinin (SBA), and winged pea agglutinin, five lectin-binding receptor molecules have been recognized on the plasma membrane of the granulocyte (immunocyte) of the horseshoe crab, Limulus polyphemus. Only Con A and SBA caused capping of surface receptors. On the basis of the known functions of these lectin-binding receptor molecules in other invertebrates and vertebrates, their roles in phagocytosis, encapsulation, signaling, and possibly in complement pathway activation are postulated. In addition to lectin-binding receptors, Na+,K(+)-ATPase and acetylcholinesterase were detected on the plasma membrane. Because Limulus dates back to some 200 million years, the antiquity of these molecules is suggested. Furthermore, some of the lectin-binding surface receptors have the potential to be used as markers to separate different kinds of hemocytes in higher arthropods and to distinguish between normal and neoplastic cells in humans.  相似文献   

18.
Human, blood-derived mononuclear cells (MC), stimulated with Concanavalin A (Con A), synthesized a chondroitin sulfate (CS) proteoglycan (PG), which was elaborated largely by T-cells. Following Con A stimulation, the majority of MC adhered to the culture dish by day 2; but as incubation progressed to day 10 the proportion of non-adherent (NAd) MC increased in a fashion which approximately paralleled the accumulation of PG in the medium. Cell kinetic studies suggest that, following Con A stimulation, there was an inverse relationship between the amount of newly synthesized cellular PG and adherence, which appears to be related to a reciprocal effect on PG synthesis of the declining adherent (Ad) cell density with time of culture. In the stimulated cultures, NAd cells contained much more newly synthesized CS/cell than Ad cells up to day 6 of incubation. Cell type analysis, using monoclonal antibodies against specific cell surface markers, suggested that the higher PG synthesis in the NAd population may, at least in part, be due to a greater proportion of T-helper cells.  相似文献   

19.
Summary Administration of Concanavalin A (Con A) to cultured skin fibroblasts derived from chick embryos at two developmental stages produce variations in the relative concentration of individual glycosaminoglycan (GAG) secreted by the cells. This effect is different: at 7 days (increase of hyaluronic acid and dermatan sulphate and decrease of chondroitin sulphate) and at 14 days (dermatan sulphate is not detectable).All the cells bind the Con A specifically, but a different pattern of agglutination is present in fibroblasts of the two embryonic ages. Since Con A is well known to bind carbohydrate-containing surface proteins, the result suggests that the release of GAG by chick embryonic fibroblasts can be modulated by cell surface receptors.  相似文献   

20.
We have used a model system to explore the importance of long-range lateral diffusion of membrane proteins in specific membrane-membrane adhesion. Single, cell-size phospholipid vesicles containing a dinitrophenyl (DNP)-lipid hapten were maneuvered into contact with rat basophilic leukemia (RBL) cells carrying fluorescent anti-DNP IgE in their cell-surface Fc epsilon receptors. Upon cell-vesicle contact the antibody molecules underwent a marked lateral redistribution, accumulating at the site of contact and becoming significantly depleted from noncontacting membrane. As assayed with a micropipette suction method, there was a time-dependent increase in the strength of cell-vesicle adhesion. This development of adhesion paralleled the kinetics of accumulation of the adhesion-mediating antibody molecules at the zone of membrane-membrane contact. Both adhesion and redistribution were absolutely dependent upon a specific interaction of the IgE with the hapten: No redistribution occurred when vesicles lacking the DNP hapten were pushed against IgE-armed RBL cells, and on cells bearing a 1:1 mixture of nonimmune rat IgE and anti-DNP mouse IgE, only the latter underwent redistribution. Vesicles containing DNP-lipids bound to RBL cells carrying anti-DNP IgE but not to cells carrying nonimmune rat IgE. Measurable nonspecific binding did not develop even after 15 min of pushing DNP-bearing vesicles against RBL cells sensitized with nonimmune IgE. Neither redistribution nor adhesion was blocked by metabolic poisons such as NaN3 and NaF. Both redistribution and adhesion occurred in plasma membrane blebs previously shown to lack cytoskeletal filaments. The above observations are consistent with contact-induced redistribution of the IgE being a result of passive diffusion-mediated trapping rather than active cellular responses. Thus, long-range diffusion of specific proteins can in some cases contribute to the formation of stable adhesion between membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号