首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and proteolysis of the spore coat proteins, SpoIVA and YrbA, of Bacillus subtilis were analyzed using antisera. Almost no intact full-length proteins of either type were extracted from wild-type spores, while yabG mutant spores contained intact SpoIVA and YrbA proteins. We purified recombinant YrbA and YabG proteins from Escherichia coli transformants and found that YrbA was cleaved to the smaller moiety in the presence of YabG in vitro. These observations indicate that YabG is a protease involved in the proteolysis and maturation of SpoIVA and YrbA proteins, conserved with the cortex and/or coat assembly by B. subtilis.  相似文献   

2.
The assembly of a multiprotein coat around the Bacillus subtilis spore confers resistance to lytic enzymes and noxious chemicals and ensures normal germination. Part of the coat is cross-linked and resistant to solubilization. The coat contains epsilon-(gamma-glutamyl)lysyl cross-links, and the expression of the gene (tgl) for a spore-associated transglutaminase was shown before to be required for the cross-linking of coat protein GerQ. Here, we have investigated the assembly and function of Tgl. We found that Tgl associates, albeit at somewhat reduced levels, with the coats of mutants that are unable to assemble the outer coat (cotE), that are missing the inner coat and with a greatly altered outer coat (gerE), or that are lacking discernible inner and outer coat structures (cotE gerE double mutant). This suggests that Tgl is present at various levels within the coat lattice. The assembly of Tgl occurs independently of its own activity, as a single amino acid substitution of a cysteine to an alanine (C116A) at the active site of Tgl does not affect its accumulation or assembly. However, like a tgl insertional mutation, the tglC116A allele causes increased extractability of polypeptides of about 40, 28, and 16 kDa in addition to GerQ (20 kDa) and affects the structural integrity of the coat. We show that most Tgl is assembled onto the spore surface soon after its synthesis in the mother cell under sigma(K) control but that the complete insolubilization of at least two of the Tgl-controlled polypeptides occurs several hours later. We also show that a multicopy allele of tgl causes increased assembly of Tgl and affects the assembly, structure, and functional properties of the coat.  相似文献   

3.
4.
The spores of Bacillus subtilis show remarkable resistance to many environmental stresses, due in part to the presence of an outer proteinaceous structure known as the spore coat. GerQ is a spore coat protein essential for the presence of CwlJ, an enzyme involved in the hydrolysis of the cortex during spore germination, in the spore coat. Here we show that GerQ is cross-linked into higher-molecular-mass forms due in large part to a transglutaminase. GerQ is the only substrate for this transglutaminase identified to date. In addition, we show that cross-linking of GerQ into high-molecular-mass forms occurs only very late in sporulation, after mother cell lysis. These findings, as well as studies of GerQ cross-linking in mutant strains where spore coat assembly is perturbed, lead us to suggest that coat proteins must assemble first and that their cross-linking follows as a final step in the spore coat formation pathway.  相似文献   

5.
Spores produced by a mutant of Bacillus subtilis were slow to develop their resistance properties during sporulation, and were slower to germinate than were wild-type spores. The coat protein composition of the mutant spores, as analysed by SDS-PAGE, was similar to that of the wild-type spores. However, one of the proteins (mol. wt 12000) which is normally present in the outer-most layers of mature wild-type spores and which is surface-exposed, was assembled abnormally into the coat of the mutant spores and not surface-exposed. The mutation responsible for this phenotype (spo-520) has been mapped between pheA and leuB on the B. subtilis chromosome, and was 47% cotransformable with leuB16. This mutation, and three others closely linked to it, define a new sporulation locus, spoVIB, which is involved in spore coat assembly. The phenotype of the mutant(s) supports the contention that spore germination and resistance properties may be determined by the assembly of the coat.  相似文献   

6.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

7.
8.
A proteolytic activity present in spores of Bacillus megaterium has previously been implicated in the initiation of hydrolysis of the A, B, and C proteins which are degraded during spore germination. Four mutants of B. megaterium containing 20 to 30% of the normal level of spore proteolytic activity have been isolated. Partial purification of the protease from wild-type spores by a reviewed procedure resulted in the resolution of spore protease activity on the A, B, and C proteins into two peaks--a major one (protease II) and a minor one (protease I). The protease mutants tested lacked active protease II. All of the mutants exhibited a decreased rate of degradation of the A, B, and C proteins during spore germination at 30 degrees C, but degradation of the proteins did occur. Degradation of the A, B, and C proteins during germination of the mutant spores was decreased neither by blockade of ATP production nor by germination at 44 degrees C. Initiation of spore germination was normal in all four mutants, and all four mutants went through outgrowth, grew, and sporulated normally in rich medium. Similarly, outgrowth of spores of two of the four mutants was normal in minimal medium at 30 degrees C. In the two mutants studied, the kinetics of loss of spore heat resistance and spore UV light resistance during germination were identical to those of wild-type spores. This indicates that the A, B, and C proteins alone are not sufficient to account for the heat or UV light resistance of the dormant spore.  相似文献   

9.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

10.
A mutation near cysB on the Bacillus subtilis chromosome marks a new sporulation locus, spoVIC. It causes spores to germinate more slowly than those of the wild-type under all conditions and, from indirect evidence, it does not appear to alter the affinity for the germinant L-alanine. The mutant spores have some deficiency of coat proteins (particularly the alkalisoluble coat protein, Mr = 12 000) and the spore coat layers are disorganized. The mutant strain grows normally and sporulates normally until stage II, after which its sporulation is delayed by about 2 h compared to that of the wild-type. This delay results in the prolonged synthesis of some coat proteins and the late synthesis of others. The abnormal coat may be the cause of the germination deficiency. A double mutant strain carrying the spoVIC610 mutation together with gerE36 sporulates slowly. Its spores have very little coat protein, are sensitive to heat, lysozyme and organic solvents, but germinate as well as the strain carrying the spoVIC mutation alone. The role of the spore coat in germination is discussed in the light of these findings.  相似文献   

11.
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis.  相似文献   

12.
The Bacillus subtilis spore coat is composed of at least 15 polypeptides plus an insoluble protein fraction arranged in three morphological layers. The insoluble fraction accounts for about 30% of the coat protein and is resistant to solubilization by a variety of reagents, implying extensive cross-linking. A dodecapeptide was purified from this fraction by formic acid hydrolysis and reverse-phase high-performance liquid chromatography. This peptide was sequenced, and a gene designated cotX was cloned by reverse genetics. The cotX gene encoding the dodecapeptide at its amino end was clustered with four other genes designated cotV, cotW, cotY, and cotZ. These genes were mapped to 107 degrees between thiB and metA on the B. subtilis chromosome. The deduced amino acid sequences of the cotY and cotZ genes are very similar. Both proteins are cysteine rich, and CotY antigen was present in spore coat extracts as disulfide cross-linked multimers. There was little CotX antigen in the spore coat soluble fraction, and deletion of this gene resulted in a 30% reduction in the spore coat insoluble fraction. Spores produced by strains with deletions of the cotX, cotYZ, or cotXYZ genes were heat and lysozyme resistant but readily clumped and responded more rapidly to germinants than did spores from the wild type. In electron micrographs, there was a less densely staining outer coat in spores produced by the cotX null mutant, and those produced by a strain with a deletion of the cotXYZ genes had an incomplete outer coat. These proteins, as part of the coat insoluble fraction, appear to be localized to the outer coat and influence spore hydrophobicity as well as the accessibility of germinants.  相似文献   

13.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   

14.
The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of approximately 9 and a temperature optimum of 60 degrees C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl(2). Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca(2+) almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca(2+) and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca(2+)-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca(2+)-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.  相似文献   

15.
The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  相似文献   

16.
17.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

18.
Three conditional Bacillus cereus mutants altered in the assembly or formation of spore coat layers were analyzed. They all grew as well as the wild type in an enriched or minimal medium but produced lysozyme and octanol-sensitive spores at the nonpermissive temperature (35 to 38 degrees C). The spores also germinated slowly when produced at 35 degrees C. Temperature-shift experiments indicated that the defective protein or regulatory signal is expressed at the time of formation of the outer spore coat layers. Revertants regained all wild-type spore properties at frequencies consistent with initial point mutations. Spore coat defects were evident in thin sections and freeze-etch micrographs of mutant spores produced at 35 degrees C. In addition, one mutant contained an extra surface deposit, perhaps unprocessed spore coat precursor protein. A prevalent band of about 65,000 daltons (the same size as the presumptive precursor) was present in spore coat extracts of this mutant and may be incorrectly processed to mature spore coat polypeptides. Another class of mutants was defective in the late uptake of half-cystine residues into spore coats. Such a defect could lead to improper formation of the outer spore coat layers.  相似文献   

19.
The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an epsilon-(gamma-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.  相似文献   

20.
Using several kinds of criteria for the germination of bacterial spores, germination-pH curves were drawn for Bacillus subtilis spores observed at different temperatures. The experiments revealed that optimum pH for spore germination was markedly changed by changing the incubation temperature; the optimum pH for germination was 7.4 at 37 degrees C and 5.4 at 10 degrees C. A possible mechanism involved in this phenomenon is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号