首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
葡萄果实发育过程中果肉细胞超微结构的观察   总被引:20,自引:0,他引:20  
用透射电镜观察了“巨峰”葡萄(Vitis vinifera×V.labrusca)果实3个发育时期中果肉细胞超微结构的变化。果实第一次快速生长期的果肉细胞超微结构表现出物质和能量代谢旺盛的特点。缓慢生长期的果实虽外部形态平静少变,但果肉细胞超微结构表现出深刻的变化:细胞核形状特化为裂瓣状是最显著的特点;线粒体数目丰富;粗面内质网槽库膨大形成的囊泡富集,出现向液泡汇融和向质膜靠近的现象;质膜内陷;液泡膜完整。另外,原生质也出现一些降解的现象。但总体结构特点表明果肉细胞在此期处于十分活跃的物质周转代谢和信息交换过程中。果实第二次快速生长期果肉细胞超微结构表现出衰老降解的特点,但线粒体结构依然完整,数量仍然丰富,原生质膜也保持了很好的完整性,这似乎与维持第二次快速生长或成熟有关。  相似文献   

2.
以处于不同发育时期的红富士葡萄 (VitisviniferaL .×VitislabruscaL .)果实为试材 ,采用胶体金免疫电镜定位技术对果肉细胞脱落酸 (ABA)的区隔化及其动态进行了研究。结果表明 :在果实发育前期 ,ABA主要存在于细胞核和胞质溶胶中 ;随着果实的进一步发育成熟 ,ABA转为主要分布在叶绿体和细胞核中。与处于第Ⅰ期、始熟期以及第Ⅲ期果实的果肉细胞ABA含量相比 ,处于第Ⅱ期的前期果实的果肉细胞ABA含量最低。这些事实说明在果实发育成熟的任一时期 ,果肉细胞ABA均呈区隔化分布 ,其在不同区隔之间的浓度差异随着果实的发育成熟而发生变化 ,即发生了再分配  相似文献   

3.
果实成熟过程中细胞壁组成的变化   总被引:9,自引:0,他引:9  
果实成熟是一个复杂的过程。Brady[1 ] 认为成熟是一个由遗传决定的器官分化协调一致的过程 ,因此人们普遍把成熟的调控作为植物发育的一个模型来研究。果实成熟时呈现出许多生理生化变化 ,除呼吸上升、乙烯合成、色素转变和风味物质形成外 ,软化也是许多果实成熟时相伴的重要现象。已公认这些质地上的变化是细胞壁结构上的改变引起的[2 ] 。本文介绍植物细胞壁的结构模型、果肉细胞壁组分间的交联、成熟过程中细胞壁组分变化及对质地的影响 ,旨在更好地理解果实的质地及其在成熟过程中的变化基础。1 果肉细胞壁的结构与组分间的交联…  相似文献   

4.
利用热偶湿度计(thermocouplepsychrometer)研究了野生型、GA-缺陷型和ABA-缺陷型番茄发育过程中果实种子的水分关系,发现除ABA-缺陷型种子胶囊和果肉水势变化特殊外,3种类型果实水分状况变化基本一致;在整个发育时期内.前期种子胶囊和果肉水分流向种子,中期种子水分流向种子胶囊和果肉,后期种子和果实间的水势达到平衡。鉴于种胚脱水是一种主动过程,种胚水势一直低于整个种子、种子胶囊和果肉。内源赤霉素可明显增加果实和种子的重量,但对增加种胚溶质的作用不大。由于内源脱落酸可以促使果实成熟和衰老,促进果实细胞解体,大大降低种子胶囊和果肉水势,因而抑制成熟种子在果实内萌发。  相似文献   

5.
利用焦锑酸钾沉淀-透射电子显微镜观察的方法, 观测了采前喷施草酸或钙后采收期芒果(Mangifera indica)果实细胞钙含量和分布情况, 探讨钙含量和分布变化对果实成熟和衰老的影响。结果表明, 与对照相比, 采前经草酸或钙处理的果实果皮和果肉细胞排列较规则且致密, 淀粉粒分布较多。采前草酸或钙处理均能显著提高芒果果皮和外果肉组织的钙含量;疏松结合态钙均匀分布在果皮和果肉细胞的细胞壁、细胞膜、液泡膜和质体中, 并在液泡内堆积; 而对照果实的液泡膜模糊, 钙颗粒较少。实验证明采前喷施草酸或钙能维持果实细胞的形态, 提高果实细胞的钙含量, 影响钙的分布, 有利于保持果实的硬度并可增加果实营养。  相似文献   

6.
采前喷施草酸对芒果果实细胞钙含量和分布的影响   总被引:3,自引:0,他引:3  
利用焦锑酸钾沉淀-透射电子显微镜观察的方法, 观测了采前喷施草酸或钙后采收期芒果(Mangifera indica)果实细胞钙含量和分布情况, 探讨钙含量和分布变化对果实成熟和衰老的影响。结果表明, 与对照相比, 采前经草酸或钙处理的果实果皮和果肉细胞排列较规则且致密, 淀粉粒分布较多。采前草酸或钙处理均能显著提高芒果果皮和外果肉组织的钙含量;疏松结合态钙均匀分布在果皮和果肉细胞的细胞壁、细胞膜、液泡膜和质体中, 并在液泡内堆积; 而对照果实的液泡膜模糊, 钙颗粒较少。实验证明采前喷施草酸或钙能维持果实细胞的形态, 提高果实细胞的钙含量, 影响钙的分布, 有利于保持果实的硬度并可增加果实营养。  相似文献   

7.
在室温[(25±1)℃]条件下观察1-甲基环丙烯(1-MCP)影响下‘嘎拉’苹果采后果肉细胞结构变化的结果表明,随着贮藏时间的延长,未作1-MCP处理的果实果肉细胞逐渐失去张力,细胞壁皱褶,中胶层逐渐降解,继而出现胞间裂痕,细胞间隙逐渐增大,细胞壁纤维松散,细胞器逐渐空泡化等现象;1-MCP显著抑制果肉细胞的结构损伤,最终减缓果实的软化。  相似文献   

8.
香蕉果实后熟过程中果肉软化差异的研究   总被引:1,自引:0,他引:1  
对香蕉果实贮藏过程中内、外果肉相关生理生化指标及细胞结构的变化进行系统的观察分析,结果显示:(1)在贮藏初期香蕉果实内果肉的硬度小于外果肉,在贮藏过程中的同一时期,均表现出内果肉硬度小于外果肉,且内果肉硬度较外果肉先降到零;(2)在贮藏初期内果肉中多聚乳糖醛酸酶(PG)和淀粉酶的活性均高于外果肉,随着贮藏时间的延长,酶活性在内、外果肉均表现出不断增加,且这两种酶活性在内果肉中早于外果肉达到最高值,但其在内果肉中的最高值均略低于外果肉的最高值;而淀粉含量却相反,在贮藏初期内果肉中淀粉含量低于外果肉,且在贮藏过程中的降解速率高于外果肉;(3)超微结构显示,香蕉果实内果肉中淀粉粒和细胞壁结构的降解均早于外果肉.研究表明,香蕉果实的软化首先由内果肉细胞降解开始,并呈放射状向外逐步延伸.  相似文献   

9.
果实的生长主要是由细胞数目和细胞体积以及细胞间隙的变化引起的。成熟果实的细胞数目决定于开花期子房的细胞数目。细胞分裂与果实生长细胞分裂早在子房发育期间就开始了。不同种类的果实,其生长发育期间细胞的分裂时间、分裂次数和分裂方向是不同的,这一般可分为以下几种类型: 间隔分裂型这种类型的果实从花原始体形成即开始细胞分裂,开花期暂停,授粉受精后,果肉细胞又开始旺盛的分裂,数周后细胞分裂停止,细胞数目基本趋于稳定。多数果实属于此种类型。例如苹果,花前子房的膨大主要通过细胞数目的增加来实现。开花时幼果内约有200万个细胞,成熟时的果实内有约  相似文献   

10.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

11.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

12.
Texture changes in ripening fruits influence consumer preference, fruit storability, transportability, shelf-life, and response to pathogen attack. Genetic regulatory factors as well as environmental conditions simultaneously affect texture changes in ripening fruit. Recent physiological and molecular studies provide insights into our knowledge and understanding of events and/or factors that contribute to changes in fruit texture, including softening and lignification. The roles of enzymes involved in modification and/or regulation of cell wall components as well as ethylene signaling components that play key roles in fruit textural changes during fruit ripening and storage will be presented and discussed. In addition, physical as well as chemical regulation of textural changes in ripening fruit will be explored.  相似文献   

13.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

14.
Ultrastructural changes in the pericarp of tomato (Lycopersicon esculentum Mill) fruit were followed during ripening. Ethylene production was monitored by gas chromatography and samples analyzed at successive stages of the ripening process.

Changes in the cytoplasmic ultrastructure were not consistent with the suggestion that ripening is a `senescence' phenomenon. A large degree of ultrastructural organization, especially of the mitochondria, chromoplasts, and rough endoplasmic reticulum, was retained by ripe fruit.

Striking changes in the structure of the cell wall were noted, beginning with dissolution of the middle lamella and eventual disruption of the primary cell wall. These changes were correlated with appearance of polygalacturonase (EC 3.2.1.15) isoenzymes. Application of purified tomato polygalacturonase isoenzymes to mature green fruit tissue duplicated the changes in the cell wall noted during normal ripening. Possible roles of the polygalacturonase isoenzymes in cell wall disorganization are discussed.

  相似文献   

15.
16.
Reeve , R. M. (U.S.D.A., Albany, California.) Histological and histochemical changes in developing and ripening peaches. II. The cell walls and pectins. Amer. Jour. Bot. 46(4): 241–247. Illus. 1959.—Histological and histochemical observations on developing and ripening clingstone and freestone peaches have revealed that, after cell divisions have ceased in the mesocarp, cell wall thickening and cell enlargement in the mesocarp parenchyma increase until the fruit is nearly full cell size. The cell walls then decrease in thickness as the fruit ripens and softens. Degree of methyl esterification of the pectic substances, as estimated histochemically, remains at about 75–80% in immature fruits during their cell-enlargement phase of growth. Percent of methyl esterification apparently is much lower, or amounts of esterified pectates are very low during the meristematic phases of fruit growth. Just prior to ripening, degree of esterification increases and approaches 100% in hard, ripe fruit at about the same time that the parenchyma cell walls exhibit their greatest thickness or degree of hydration. The degree of esterification of the pectic substances then rapidly decreases and the cell walls become appreciably thinner as the ripening fruit softens. Further relation of these changes in wall thickness, in degree of esterification of the pectins, and in other cell wall carbohydrates to the textural qualities of ripening fruits is discussed. Interpretations concerning cell wall plasticity, cell growth and relation between auxin and changes in pectins also are presented.  相似文献   

17.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

18.
Softening of mango fruit has been investigated by analysis of ripening related changes in the composition of the fruit cell walls. There is an apparent overall loss of galactosyl and deoxyhexosyl residues during ripening, the latter indicating degradation of the pectin component of the wall. The loss of galactose appears to be restricted to the chelator soluble fraction of the wall pectin, whilst loss of deoxyhexose seems to be more evenly distributed amongst the pectin. The chelator soluble pectin fraction is progressively depolymerised and becomes more polydisperse during ripening. These changes are similar to those occurring in other fruit and are related to the action of wall hydrolases during ripening.  相似文献   

19.
香蕉果胶裂解酶基因的克隆   总被引:7,自引:0,他引:7  
根据已经报告的香蕉果胶裂解酶基因序列,设计了特异引物,通过RT-PCR获得果胶裂解酶的cDNA,并克隆测序,与已报告的序列进行了比较,二者核苷酸序列的同源性达99.24%;推测的氨基酸序列也具有很高的同源性,达97.7%.通过RT-PCR的方法对香蕉不同组织和不同成熟度果实的果胶裂解酶基因的表达进行了研究.结果表明该基因只在果实中表达,具有组织特异性,而且只在果实的特定发育阶段表达.  相似文献   

20.
Ultrastructural changes in the cell walls of “Calville de San Sauveur” apples (Malus sylvestris Mill) and “Spadona” pear (Pyrus communis L.) fruit were followed during ripening. In apple, structural alterations in cell walls became apparent at advanced stages of softening and showed predominantly dissolution of the middle lamella. In pears softening was also associated with the dissolution of the middle lamella, and in addition a gradual disintegration of fibrillar material throughout the cell wall. In fully ripe fruit almost all of the fibrillar arrangement in the cell wall was lost. Application of enzyme solutions containing polygalacturonase and cellulase to tissue discs from firm pear fruit led to ultrastructural changes observed in naturally ripening pears. In apple polygalacturonase alone was sufficient to dissolve the middle lamella region of the cell walls, as was also found to occur in naturally ripening fruit. In both apple and pear the cell wall areas containing plasmodesmata maintained their structural integrity throughout the ripening process. At advanced stages of ripening vesicles appeared in the vicinity of plasmodesmata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号