首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To elucidate the possible role of nucleolar phosphoprotein B23 in ribosome synthesis, drugs which inhibit the processing of ribosomal RNA were employed. After treatment with actinomycin D, toyocamycin or high doses of α-amanitin, a uniform nucleoplasmic fluorescence was observed. Low doses of α-amanitin and the protein synthesis inhibitor puromycin and cycloheximide had no effect on protein B23 translocation. By ELISA immunoassay, there was a 60% decrease in the amount of protein B23 in the nucleoli of the actinomycin D-treated cells as compared with the control nucleoli. Conversely, the amount of protein B23 in the nucleoplasm (excluding nucleoli) was 3-fold higher in the actinomycin D-treated cells. Preribosomal ribunucleoprotein particles (pre-rRNPs) were extracted from isolated nucleoli of Novikoff hepatoma ascites cells and fractionated on sucrose density gradients. Protein B23 was found co-localized with the pre-rRNPs as determined by ELISA assays which agrees with previous studies. The proteins in these 80 S and 55 S pre-ribosomal ribonucleoprotein particles were fractionated by 10% gel electrophoresis. Immunoblots showed protein B23 was present in both pre-rRNPs.  相似文献   

2.
To elucidate the possible role of nucleolar phosphoprotein B23 in ribosome synthesis, drugs which inhibit the processing of ribosomal RNA were employed. After treatment with actinomycin D, toyocamycin or high doses of alpha-amanitin, a uniform nucleoplasmic fluorescence was observed. Low doses of alpha-amanitin and the protein synthesis inhibitor puromycin and cycloheximide had no effect on protein B23 translocation. By ELISA immunoassay, there was a 60% decrease in the amount of protein B23 in the nucleoli of the actinomycin D-treated cells as compared with the control nucleoli. Conversely, the amount of protein B23 in the nucleoplasm (excluding nucleoli) was 3-fold higher in the actinomycin D-treated cells. Preribosomal ribonucleoprotein particles (pre-rRNPs) were extracted from isolated nucleoli of Novikoff hepatoma ascites cells and fractionated on sucrose density gradients. Protein B23 was found co-localized with the pre-rRNPs as determined by ELISA assays which agrees with previous studies. The proteins in these 80 S and 55 S pre-ribosomal ribonucleoprotein particles were fractionated by 10% gel electrophoresis. Immunoblots showed protein B23 was present in both pre-rRNPs.  相似文献   

3.
α-Amanitin, a potent inhibitor of RNA polymerase II, is found inert against transformed fibroblasts in tissue culture. However, when α-amanitin is synergistically used with amphotericin B, RNA and protein synthesis are strongly blocked. Our data suggest that messenger RNA formation is preferentially inhibited since (1) the total inhibition by α-amanitin was greatly magnified when rRNA synthesis was first blocked with 0.03 μg/ml actinomycin D; (2) mRNA in polysomes was greatly reduced and the size of polysomes diminished after cells were exposed to 2 μg/ml α-amanitin plus 20 μg/ml amphotericin B for 5 h.  相似文献   

4.
Bright nucleolar immunofluorescence was observed in HeLa S3 cells by immunostaining with a monoclonal antibody to the nucleolar phosphoprotein B23 (MW 37 kD/pI 5.1). After 48 h of incubation in a serum-free medium, the nucleolar fluorescence was diminished and a general nuclear immunofluorescence was observed. This change in localization of fluorescence indicated that protein B23 had migrated out of the nucleoli. No gross morphological change in nucleoli was observed by light microscopy and the immunolocalization of another nucleolar phosphoprotein, C23, was unaffected by serum deprivation. Relocation of protein B23 in nucleoli was observed after refeeding with serum-containing medium. This re-entry process was not observed after treatment with actinomycin D (50 ng/ml-5 micrograms/ml), but the process was unaffected by cycloheximide (0.2 mM). Quantitation of protein B23 in the nucleoli of the control (fed) or starved HeLa cells was done by ELISA immunoassay. A marked decrease in the amount of protein B23 occurred in the nucleoli of the starved cells (11.8 micrograms B23/mgDNA) as compared with the control nucleoli (20.8 micrograms B23/mgDNA). The amount of protein B23 in the nucleoplasm (excluding nucleoli) was 70% higher in the starved cells. Protein B23 was analysed by one- and two-dimensional PAGE. Three components of protein B23 with slightly different molecular weights and pIs (37 kD/5.1, 35 kD/5.1 and 35 kD/5.3) were observed in nucleoli. The lower molecular weight components were predominantly found in the nucleoplasm.  相似文献   

5.
α-Amanitin acts in vitro as a selective inhibitor of the nucleoplasmic form B RNA polymerases. Treatment of Chinese hamster ovary (CHO) cells with this drug leads principally to a severe fragmentation of the nucleoli. While the ultrastructural lesions induced by α-amanitin in CHO cells and in rat or mouse liver are quite similar, the results diverge concerning the effect on RNA synthesis. It has been shown that in rat or mouse liver α-amanitin blocks both extranucleolar and nucleolar RNA synthesis. Our autoradiographic and biochemical evidence indicates that in CHO cells high molecular weight extranucleolar RNA synthesis (HnRNA) is blocked by the α-amanitin treatment, whereas nucleolar RNA (preribosomal RNA) synthesis remains unaffected even several hours after the inhibition of extranucleolar RNA synthesis. Furthermore, the processing of this RNA as well as its transport to the cytoplasm seem only slightly affected by the treatment. Finally, under these conditions, the synthesis of the low molecular RNA species (4–5S) still occurs, though less actively. The results are interpreted as evidence for a selective impairment of HnRNA synthesis by α-amanitin in CHO cells.  相似文献   

6.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

7.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

8.
Previously it has been found that in tobacco callus cells nucleolar vacuoles repeatedly form and contract. In this study, nucleolar vacuoles were investigated by using radioautography, actinomycin D, and electron microscopy. It was found, from grain counts of nucleoli labeled with uridine-3H, that nucleoli containing vacuoles had more than three times as many grains/µ2 of nucleolar substance as did nucleolei without vacuoles. Treatment of tobacco callus cells with various concentrations of actinomycin D caused the percentage of cells containing nucleolar vacuoles to decrease; with the highest concentration the percentage of these cells dropped from the normal level of about 70% to less than 10%. However, after removal of actinomycin D the cells regained nucleolar vacuoles up to the control level. When radioautography was used with actinomycin D, it was found that the actinomycin D inhibited the uptake of uridine-3H, i.e. inhibited RNA synthesis, in those nucleoli which lost their nucleolar vacuoles. In addition, after removal of the cells from actinomycin D, it was found that as the cells regained nucleolar vacuoles the nucleoli also began to incorporate uridine-3H. Electron micrographs showed the nucleoli to be composed of a compact, finely fibrous central portion surrounded by a layer of dense particles 100–150 A in diameter. Nucleolar vacuoles occurred in the fibrous central portion. Dense particles similar to those in the outer layer of the nucleoli were found scattered throughout the vacuoles and in a dense layer at their outer edge. These data suggest that in cultured tobacco callus cells the formation and contraction of nucleolar vacuoles is closely related to RNA synthesis in the nucleolus.  相似文献   

9.
RNP particles carrying rapidly labelled RNA (informoferes) were isolated from rat liver nuclei by extraction with isotonic and 0.3 M salt buffer at pH 8 either with or without ultrasonic treatment. The importance of preliminary extraction of the nuclei with the isotonic salt buffer at a lower pH of 7 or in the presence of 50 mM EDTA is demonstrated. Administration of α-amanitin or of actinomycin D, in doses inhibiting the labelling of the heterogeneous RNA with RNA precursors in the range of 60–85%, reduces the amount of informoferes recovered. The informoferes isolated from treated animals are highly depleted in HnRNA. They still contain, however, low molecular RNA species with a slower turnover than the HnRNA. The polypeptide pattern observed after acrylamide gel electrophoresis of the informofere proteins is qualitatively changed in the treated preparations, whereas the ratio of protein to RNA decreases. In the presence of RNase inhibitor the informoferes are recovered in form of polymer structures. α-Amanitin and actinomycin D significantly reduce the amount of polymers recovered.  相似文献   

10.
REPOPULATION OF THE POSTMITOTIC NUCLEOLUS BY PREFORMED RNA   总被引:6,自引:5,他引:1  
This study is concerned with the fate of the nucleolar contents, particularly nucleolar RNA, during mitosis Mitotic cells harvested from monolayer cultures of Chinese hamster embryonal cells, KB6 (human) cells, or L929 (mouse) cells were allowed to proceed into interphase in the presence or absence (control) of 0.04–0 08 µg/ml of actinomycin D, a concentration which preferentially inhibits nucleolar (ribosomal) RNA synthesis 3 hr after mitosis, control cells had large, irregularly shaped nucleoli which stained intensely for RNA with azure B and for protein with fast green. In cells which had returned to interphase in the presence of actinomycin D, nucleoli were segregated into two components easily resolvable in the light microscope, and one of these components stained intensely for RNA with azure B. Both nucleolar components stained for protein with fast green In parallel experiments, cultures were incubated with 0.04–0 08 µg/ml actinomycin D for 3 hr before harvesting of mitotic cells, then mitotic cells were washed and allowed to return to interphase in the absence of actinomycin D. 3 hr after mitosis, nuclei of such cells were devoid of large RNA-containing structures, though small, refractile nucleolus-like bodies were observed by phase-contrast microscopy or in material stained for total protein. These experiments indicate that nucleolar RNA made several hours before mitosis persists in the mitotic cell and repopulates nucleoli when they reform after mitosis  相似文献   

11.
Previous studies indicated that nucleophosmin/B23, an abundant nucleolar phosphoprotein, accumulated in the nucleoplasm (B23-translocation) of cells after exposure to selected cytotoxic drugs. Attempts were made to understand the B23-translocation mechanism. This paper reports that: (1) B23-translocation is a reversible process. Upon removal of camptothecin, which induced B23-translocation in HeLa cells, nucleophosmin/B23 relocalized into nucleoli within 2 h. Relocation occurs in the presence of cycloheximide which inhibits new protein synthesis. There is no reduction or degradation of nucleophosmin/B23 detected during drug treatments. Nucleophosmin/B23 has a half-life of 18-20 h. Taken together, these results indicate that B23-translocation is a reversible process. Drug treatment causes redistribution of nucleophosmin/B23 in nucleoplasm. (2) Inhibition of RNA synthesis does not cause the B23-translocation. Over 80% of RNA synthesis was inhibited in HeLa cells by treatment with actinomycin D, camptothecin, and methotrexate. While actinomycin D and camptothecin cause B23-translocation in all cells, 40% of methotrexate-treated cells remain untranslocated. (3) There is no significant change of phosphorylation in nucleophosmin/B23 during drug treatment. An identical oligomeric cross-linkage pattern was obtained in drug-treated cells. (4) HeLa cells treated with B23-translocation effective drugs have small and round nucleoli while control cells have large and irregular-shaped nucleoli.  相似文献   

12.
Ethylene-forming Systems in Etiolated Pea Seedling and Apple Tissue   总被引:3,自引:3,他引:0       下载免费PDF全文
Auxin-induced ethylene formation in etiolated pea (Pisum sativum L. var. Alaska) stem segments was inhibited by inhibitors of RNA and protein synthesis. Kinetics of the inhibitions is described for actinomycin D, cordycepin, α-amanitin, and cycloheximide. α-Amanitin was the most potent and fast-acting inhibitor, when added before induction or 6 hours after induction of the ethylene-forming system. The ethylene-forming system of postclimacteric apple (Malus sylvestris L.) tissue, which is already massively induced, was not further stimulated by auxin. Ethylene production in apples was inhibited least by α-amanitin and most by actinomycin D. The relative responses of the ethylene system in apples to RNA inhibitors were different from the ethylene system of pea stems. However, the protein synthesis inhibitor, cycloheximide, appeared to act equally in both tissue systems. The effect of cycloheximide on ethylene production in postclimacteric apple tissue, already producing large quantities of ethylene, suggests a dynamic regulating system for the synthesis and degradation of the ethylene-forming system.  相似文献   

13.
Nucleolar partition induced by actinomycin D was used to demonstrate some aspects of nucleolar RNA synthesis and release in mouse hepatic cells, with light and electron microscopic radioautography. The effect of the drug on RNA synthesis and nucleolar morphology was studied when actinomycin D treatment preceded labeling with tritiated orotic acid. Nucleolar partition, consisting of a segegration into granular and fibrillar parts was visible if a dosage of 25 µg of actinomycin D was used, but nucleolar RNA was still synthesized. After a dosage of 400 µg of actinomycin D, nucleolar RNA synthesis was completely stopped If labeling with tritiated orotic acid preceded treatment with 400 µg of actinomycin D, labeled nucleolar RNA was present 15 min after actinomycin D treatment while high resolution radioautography showed an association of silver grains with the granular component. At 30 min after actinomicyn D treatment all labeling was lost. Since labeling was associated with the granular component the progressive loss of label as a result of actinomycin D treatment indicated a release of nucleolar granules. The correlation between this release and the loss of 28S RNA from actinomycin D treated nucleoli as described in the literature is discussed.  相似文献   

14.
15.
RIBOSOME PRECURSOR PARTICLES IN NUCLEOLI   总被引:12,自引:9,他引:3       下载免费PDF全文
Ribonucleoprotein (RNP) particles containing the precursors of ribosomal RNA were extracted from L cell nucleoli and analyzed under conditions comparable to those used in the characterization of cytoplasmic ribosomes. Using nucleoli from cells suitably labeled with 3H-uridine, we detected three basic RNP components, sedimenting at approximately 62S, 78S, and 110S in sucrose gradients containing magnesium. A fourth particle, sedimenting at about 95S, appears to be a dimer of the 62S and 78S components. When centrifuged in gradients containing EDTA, the 62S, 78S, and 110S particles sediment at about 55S, 65S, and 80S, respectively. RNA was extracted from RNP particles which were prepared by two cycles of zonal centrifugation. The 62S particles yielded 32S RNA and a detectable amount of 28S RNA, the 78S structures, 32S RNA and possibly some 36S RNA, and the 110S particles, a mixture of 45S, 36S, and 32S RNA's. When cells were pulsed briefly and further incubated in the presence of actinomycin D, there was a gradual shift of radioactivity from heavier to lighter particles. This observation is consistent with the scheme of maturation: 110S → 78S → 62S. The principal buoyant densities in cesium chloride of the 110S, 78S, and 62S particles are 1.465, 1.490, and 1.545, respectively. These densities are all significantly lower than 1.570, which is characteristic of the mature large subunit of cytoplasmic ribosomes, suggesting that the precursor particles have a relatively higher ratio of protein to RNA, and that ribosome maturation involves, in addition to decrease in the size of the RNA molecules, a progressive decrease in the proportion of associated protein.  相似文献   

16.
17.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

18.
Ultraviolet microirradiation of one of the poles of the mitotic spindle of PK cells was performed 1 min after the onset of the anaphase. Formation of the nucleolus in the telophase and G1 period was studied by vital observation, electron microscopy and indirect immunofluorescence using antibodies against B23 protein. Sister cells with nonirradiated centrosomes and cells with partially irradiated cytoplasm were used as controls. During the first hour after the anaphase, the nuclei in both sister cells were identical and contained numerous small dense particles with granular ultrastructure. B23 protein detected in the mitotic poles and at the chromosome surface in the anaphase was dispersed in the cytoplasm in both cells in the early G1 period. Later, control cells did not display any difference from intact cells: nucleoli of a typical structure were formed, B23 protein appeared in the karyoplasm and was then accumulated in the nucleoli and disappeared from the cytoplasm and karyoplasm. Nucleoli in cells with irradiated centrosomes did not achieve the normal size and contained a significantly lower amount of granular component. B23 protein was dispersed in the karyoplasm and was not accumulated in the nucleoli. Nucleoli in cells with irradiated centrosomes contained small dense particles for at least 24 h. Telophase cells where microtubule formation had been inhibited by nocodazole formed normal nucleoli. It shows that the effects observed in cells with irradiated centrosomes are not due to the absence of the microtubule radial system. We conclude that UV microirradiation of the mitotic centrosome disturbs the postmitotic reconstruction of nucleoli probably because of the photodestruction of B23 protein accumulated in the mitotic pole.  相似文献   

19.
Molecular hybridization techniques were used to examine the stability of viral message and virion precursor RNA in murine leukemia virus-infected cells treated with actinomycin D. Under the conditions used, viral RNA synthesis was inhibited, but viral protein synthesis continued, and the cells produced noninfectious particles (actinomycin D virions) lacking genomic RNA (J. G. Levin and M. J. Rosenak, Proc. Natl. Acad. Sci. U.S.A. 73:1154-1158, 1976). Analysis of total RNA in virions revealed that the amount of hybridizable viral RNA decreased steadily after the addition of actinomycin D and by 8 h was 10% of the control value. Studies on fractionated viral RNA showed that this low level of hybridization is due to residual 70S RNA in the virion population. The results indicated that viral RNA which is destined to be encapsidated into virions has a half-life of approximately 3 to 4 h. In contrast, other intracellular virus-specific RNA molecules appeared to be quite stable and persisted for a long period of time, with a half-life of at least 12 h. These observations support the idea that two independent functional pools of 35S viral RNA exist within the infected cell: one serving as message and the other as precursor to virion RNA. The existence of two viral RNA pools was further documented by the finding that 12 h after the addition of actinomycin D, when virion precursor RNA was depleted, 35S and 21S viral nRNA species could be identified in polyribosomal RNA as well as in total polyadenylated cell RNA. Surprisingly, 35S and mRNA declined more rapidly than did 21S mRNA, which appeared to be increased in amount.  相似文献   

20.
RNA synthesis in fat body nuclei of Sarcophaga peregrina larvae was temporarily activated after injection of β-ecdysone: increased synthesis was detectable 2 hr after injecting the hormone and lasted for at least 2 hr. This increased RNA synthesis was insensitive to α-amanitin and was observed in KCl-free reaction mixture, indicating that β-ecdysone activated RNA polymerase I but not RNA polymerase II. No activation was observed when protein synthesis was inhibited by cycloheximide, suggesting that protein synthesis was essential for the activation of the nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号