首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.  相似文献   

2.
The purpose of this study was to quantify the modes and kinetics of cell death for EJ30 human bladder carcinoma cells irradiated in different phases of the cell cycle. Asynchronous human bladder carcinoma cells were observed in multiple fields by computerized video time-lapse (CVTL) microscopy for one to two cell divisions before irradiation (6 Gy) and for 6-11 days afterward. By analyzing time-lapse movies collected from these fields, pedigrees were constructed showing the behaviors of 231 cells irradiated in different phases of the cell cycle (i.e. at different times after mitosis). A total of 219 irradiated cells were determined to be non-colony-forming over the time spans of the experiments. In these nonclonogenic pedigrees, cells died primarily by necrosis either without entering mitosis or over 1 to 10 postirradiation generations. A total of 105 giant cells developed from the irradiated cells or their progeny, and 30% (31/105) divided successfully. Most nonclonogenic cells irradiated in mid-S phase (9-12 h after mitosis) died by the second generation, while those irradiated either before or after this short period in mid-S phase had cell deaths occurring over one to nine postirradiation generations. The nonclonogenic cells irradiated in mid-S phase also experienced the longest average delay before their first division. Clonogenic cells (11/12 cells) divided sooner after irradiation than the average nonclonogenic cells derived from the same phase of the cell cycle. The early death and long division delay observed for nonclonogenic cells irradiated in mid-S phase could possibly result from an increase in damage induced during the transition from the replication of euchromatin to the replication of heterochromatin.  相似文献   

3.
The requirement of B cells activated by mitogen (dextran sulfate plus lipopolysaccharide) for accessory cells was studied by partition analysis. Small numbers of splenic B cells were activated to clonal growth, as determined by visual inspection, and to immunoglobulin (Ig) synthesis, as determined by release of Ig into the culture fluid. By placing irradiated adherent cells in the periphery of the microculture wells and forcing responding cells to different areas of the well (slant experiments), it was observed that no cell contact was necessary for B cell activation, and that "promoted" contact ("Rock and Roll" experiments) does not increase the efficiency of activation. Sequential microcultures suggest that only some irradiated adherent cells act as accessory cells, but they can perform this function to more than one B cell. Attempts to perform limiting dilution analysis by varying irradiated adherent cell input showed non-single-hit behavior. When the data were rearranged, taking into account the distribution of irradiated adherent cells, then single-hit behavior with about 1 to 5% of irradiated adherent cells acting as an accessory cells for B cell clonal activation was observed. The evidence suggests that an uncommon irradiated adherent cell releases a soluble factor necessary for B cell activation and/or clonal proliferation.  相似文献   

4.
A culture system was used to evaluate the radiosensitivity of CD4+ and CD8+ T cells, Leu 19+ cells, and B cells obtained from normal adult males. Unstimulated CD8+ lymphocytes (D0 = 55 cGy) were twice as radiosensitive as CD4+ cells (D0 = 115 cGy). B cells had an intermediate radiosensitivity (D0 = 100 cGy). Leu 19+ cells were much more radioresistant and expressed a D0 of 550 cGy. When lymphoid cells were irradiated 1 or 4 days before phytohemagglutinin (PHA) stimulation, they were more radiosensitive than if they were first stimulated with PHA and then irradiated. When lymphoid cells were irradiated 1 h after PHA stimulation each lymphocyte subset was characterized by an increase in the D0 to 150 cGy for B cells to 290 cGy for CD4+ cells, and to 240 cGy for CD8+ cells. In contrast, Leu 19+ cells exhibited a decrease in their D0 to 290 cGy after they were stimulated by PHA.  相似文献   

5.
Lightly irradiated (950 R) splenic B cells were inefficient, in comparison to unseparated spleen cells, in stimulating antigen-specific proliferation of Th1 clones specific for human gamma globulin (HGG). This inefficiency was due to antigen-specific inactivation: Th1 clones preincubated with HGG and lightly irradiated B cells or mitomycin C-treated B cells were unable to proliferate to HGG in secondary cultures. In contrast to Th1 clones, Th2 clones proliferated well in response to B cell APC, and showed no decrease in their subsequent antigen-induced proliferative capacity after exposure to lightly irradiated B cells and HGG. However, preincubation of Th2 with lightly irradiated B cells and HGG did inactivate the capacity of Th2 to provide help for antibody production in secondary cultures. These results suggest that under certain conditions B cells may present antigen to Th1 and Th2 cells in a tolerogenic rather than an immunogenic manner.  相似文献   

6.
As the first step for the analysis of the biological effect of heavy charged-particle radiation, we established a method for the irradiation of individual cells with a heavy-ion microbeam apparatus at JAERI-Takasaki. CHO-K1 cells attached on a thin film of an ion track detector, CR-39, were automatically detected under a fluorescence microscope and irradiated individually with an 40Ar13+ ion (11.5 MeV/nucleon, LET 1260 keV/microm) microbeam. Without killing the irradiated cells, trajectories of irradiated ions were visualized as etch pits by treatment of the CR-39 with an alkaline-ethanol solution at 37 degrees C. The exact positions of ion hits were determined by overlaying images of both cells and etch pits. The cells that were irradiated with argon ions showed a reduced growth in postirradiation observations. Moreover, a single hit of an argon ion to the cell nucleus resulted in strong growth inhibition. These results tell us that our verified irradiation method enables us to start a precise study of the effects of high-LET radiation on cells.  相似文献   

7.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

8.
Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. This study investigated the role of changes in calcium levels in bystander responses leading to chromosomal damage in nonirradiated T98G glioma cells and AG01522 fibroblasts that had been either exposed to conditioned medium from irradiated cells or co-cultured with a population where a fraction of cells were individually targeted through the nucleus or cytoplasm with a precise number of microbeam helium-3 particles. After the recipient cells were treated with conditioned medium from T98G or AG01522 cells that had been irradiated through either nucleus or cytoplasm, rapid calcium fluxes were monitored in the nonirradiated recipient cells. Their characteristics were dependent on the source of the conditioned medium but had no dependence on radiation dose. When recipient cells were co-cultured with an irradiated population of either T98G or AG01522 cells, micronuclei were induced in the nonirradiated cells, but this response was eliminated by treating the cells with calcicludine (CaC), a potent blocker of Ca(2+) channels. Moreover, both the calcium fluxes and the bystander effect were inhibited when the irradiated T98G cells were treated with aminoguanidine, an inhibitor of nitric oxide synthase (NOS), and when the irradiated AG01522 cells were treated with DMSO, a scavenger of reactive oxygen species (ROS), which indicates that NO and ROS were involved in the bystander responses generated from irradiated T98G and AG01522 cells, respectively. Our findings indicate that calcium signaling may be an early response in radiation-induced bystander effects leading to chromosome damage.  相似文献   

9.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

10.
Dysfunction of irradiated thymus for the development of helper T cells   总被引:2,自引:0,他引:2  
The development of cytotoxic T cells and helper T cells in an intact or irradiated thymus was investigated. C57BL/6 (H-2b, Thy-1.2) mice were whole body-irradiated, or were irradiated with shielding over either the thymus or right leg and tail, and were transferred with 1.5 X 10(7) bone marrow cells from B10.Thy-1.1 mice (H-2b, Thy-1.1). At various days after reconstitution, thymus cells from the recipient mice were harvested and a peanut agglutinin low-binding population was isolated. This population was further treated with anti-Thy-1.2 plus complement to remove host-derived cells and was assayed for the frequency of cytotoxic T cell precursors (CTLp) and for the activity of helper T cells (Th). In the thymus of thymus-shielded and irradiated mice, Th activity reached normal control level by day 25, whereas CTLp frequency remained at a very low level during these days. In the thymus of whole body-irradiated mice, generation of CTLp was highly accelerated while that of Th was retarded, the period required for reconstitution being 25 days and more than 42 days for CTLp and Th, respectively. Preferential development of CTLp was also seen in right leg- and tail-shielded (L-T-shielded) and irradiated recipients. Histological observation indicated that Ia+ nonlymphoid cells were well preserved in the thymus of thymus-shielded and irradiated recipients, whereas in L-T-shielded and irradiated recipients, such cells in the medulla were markedly reduced in number. These results suggest strongly that the generation of Th but not CTLp is dependent on radiosensitive thymic component(s), and that such components may represent Ia+ cells themselves in the medulla or some microenvironment related to Ia+ cells.  相似文献   

11.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

12.
Analysis of time-lapse cinemicrographs of X-irradiated HeLa S3 cells has shown that the incidence of cell fusion was increased from 0.9% (following 1267 divisions) in control cells to an average of 22% (following 655 divisions) in cells irradiated with 500 rad doses of 220 kv X-rays. The incidence depended on the stage of the generation cycle at which the parent cells were irradiated. It was nearly constant in the first three postirradiation generations. Fusion occurred at all stages of the generation cycle, but preferentially during the first 20%. Cells undergoing fusion progressed more slowly through the generation cycle and had a higher probability of disintegrating than did irradiated cells that did not fuse. The occurrence of fusion was clonally distributed in the population. It took place only between sister (or closely related) cells. Protoplasmic bridges were often visible between sister cells prior to fusion. Giant cells arose only as a result of fusion. The incidence of multipolar divisions, though higher than in unirradiated cells, was only 5.5% in cultures irradiated with 500 rads. Fusion occurred following 85% of the multipolar divisions and was often followed by a multipolar division.  相似文献   

13.
DNA breaks and their repair efficiency were analyzed in irradiated in vitro lymphocytes (at doses 1 Gy, gamma-radiation of 60Co, dose rate 1 Gy/min) isolated from peripheral blood of 41 untreated patients with breast cancer and 25 healthy donors using the DNA comet assay under non-denaturing conditions (mainly double-strand DNA breaks (DSB), as well as apoptotic cell death using the DNA halo assay. To estimate the expression of bystander effect, the cells were incubated in a culture medium obtained from lymphocytes irradiated in vitro at doses 1 Gy. The average DSB level in blood lymphocytes of breast cancer patients was shown to be significantly higher (p < 0.05) compared with that in control donors. In general, the following effects were observed in irradiated in vitro lymphocytes of cancer patients: (1) increased sensitivity to y-radiation-induced DNA DSBs compared with lymphocytes from healthy donors, (2) reduced repair efficiency of these damages. Incubation of irradiated blood lymphocytes in a medium from irradiated cells led to an increased relative number of DNA DSBs and an elevated fraction of cells dying through apoptotic pathway both in blood lymphocytes from cancer patients and control donors. However, these non-targeted effects were more expressed for the blood lymphocytes of breast cancer patients.  相似文献   

14.
Proliferation of antigen-specific T-cell populations was induced in cultures stimulated with antigen and a suitable source of antigen-presenting cells. Soluble (keyhole limpet hemocyanin) and particulate (horse red blood cells) antigens were presented by irradiated spleen cells and by a variety of B-lymphoma-cell lines, providing support for antigen-specific H-2-restricted T-cell responses. A marked heterogeneity was demonstrated, however, in the capacity of T-cell lines to proliferate in response to antigen presented by the B-lymphoma cells. T-cell populations were prepared from the lymph nodes of antigen-primed mice and restimulated in vitro in the presence of antigen and irradiated spleen cells. During the first six in vitro restimulations, these T-cell populations maintained the capacity to respond to antigen presented either by irradiated spleen cells or by B-lymphoma cells. Continued growth of these T-cell populations, again in the presence of antigen and irradiated spleen cells, resulted in the generation of T-cell lines which had lost the ability to respond to antigen presented by B-lymphoma cells. These lines however, fully retained the capacity to proliferate in the presence of antigen and irradiated spleen cells. T-cell clones derived from one of these lines were also unable to respond to antigen presented by B-lymphoma cells but again proliferated in the presence of antigen and irradiated spleen cells. Supernatants containing high levels of IL-1, IL-2, or IL-3 activity failed to reconstituted the antigen-specific response of T-cell lines which had lost the capacity to respond to antigen presented by B-lymphoma cells. Furthermore, titrated numbers of irradiated spleen cells, while having the capacity to support T-cell proliferation themselves, failed to synergize with B-lymphoma cells in the support of antigen-specific T-cell proliferation. Thus we have defined populations of antigen-specific, H-2-restricted T cells which do not recognize antigen presented by B-lymphoma cells and can therefore discriminate between different antigen-presenting cell types.  相似文献   

15.
Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis?) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not lead to higher mutagenesis in unirradiated cells. Thus the data did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic.  相似文献   

16.
We used the bromouracil-photolysis technique to estimate the sizes of the repaired regions in normal human and xeroderma pigmentosum (XP) cells irradiated by gamma-rays aerobically or anoxically. After 1 1/2 hours of incubation, single-strand breaks were repaired and the repaired regions were small--one to two BrUra residues--for cells irradiated aerobically or anoxically. After a 20-hour incubation, the repaired region in normal cells showed a component mimicking U.V.-repair. There were large patches (approximately 30 BrUra residues) in the approximate ratios of one per six chain breaks for aerobic irradiation and one per three chain breaks for anoxic irradiation. XP cells, however, only showed large patches at 20 hours if they had been irradiated aerobically. We could not detect such regions in XP cells irradiated anoxically. These results indicate (1) that some part of ionizing damage mimics excision of U.V. damage in that the repair patches are large and the repair takes an appreciable time; (2) the types of such damage depend on whether the irradiation is done aerobically or anoxically; and (3) XP cells are defective in repairing a component of anoxic damage.  相似文献   

17.
At the initial stages of an adaptive response the transposition of the homologous chromosome loci from the peripheral parts of the nucleus and their approach happens. It is necessary for the repair of DNA double strand breaks in the process of the homologous recombination. Was shown that the chromosome loci transposition and accompanied by the nucleolus activities took place first in the irradiated (X-rays, 10 cGy) G0-lymphocytes, and then in the intact (bystander) cells incubated in the growth medium of irradiated lymphocytes. If there is a bystander effect the quantity of irradiated cells may be three order less than the bystander cells that affirms the great capacity of stress-signalization system. Moreover, the DNA fragments (the factors of stress signaling) were obtained from the growth medium supernatant of the irradiated and of the intact lymphocytes. In other independent experiments they were inoculated into the growth medium of recipient cells. Was demonstrated that there is loci transposition of homologous chromosomes loci and of nucleus activity after introducing the DNA fragments of irradiated cells. After introducing the DNA fragments of non-irradiated cells the both effects were not observed. In the work the characteristics of the obtained factors and the possible ways of stress signaling between the irradiated and the bystander lymphocytes were discussed.  相似文献   

18.
Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.  相似文献   

19.
In this study the induction of double-strand breaks (DSBs) was investigated in Chinese hamster V79-379A cells irradiated with the Auger-electron emitter (125)I incorporated into DNA. The role of chromatin organization was studied by pulse-labeling synchronized cells with (125)IdU before decay accumulation in early or late S phase. Pulsed-field gel electrophoresis and fragment-size analysis were used to quantify the distribution of DNA fragments in irradiated intact cells and naked DNA as well as in DNA from asynchronously labeled cultures in a different scavenging environment. The results show that in intact cells, after accumulation of decays at -70 degrees C in the presence of 10% DMSO, almost four times more DSBs were induced in late S phase compared with early S phase and the fragment distribution was clearly non-random with an excess of fragments <0.2 Mbp. The DSB yield was 0.6 DSB/cell and decay for cells irradiated in early S phase and 2.3 DSBs/cell and decay for cells irradiated in late S phase. When similar experiments were performed on naked genomic DNA or intact cells irradiated with gamma rays, the difference in yield was not as prominent. These data imply a role of chromatin organization in the induction of DSBs by DNA-incorporated (125)I. In summary, the results presented here suggest that the yield of DSBs as well as the fragment distribution induced by (125)IdU decay may vary significantly depending on the chromatin organization during S phase and the labeling procedure used.  相似文献   

20.
Summary The therapeutic use of (a) radiation-inactivated tumor cells, (b) Bacillus Calmette-Guérin (BCG), and (c) heparinized plasma from normal mice to reduce radiation-induced impairment of existing antitumor resistance was investigated in female C3H/He hosts of syngeneic mammary carcinoma implants. The mice, which had been moderately presensitized 50 days before challenge, were given 300 rad whole-body irradiation at various times up to the day of challenge and 3 days after. Irradiated presensitized and irradiated unsensitized animals were maximally immunodepressed 1–2 weeks after exposure. The levels of resistance seen in unirradiated presensitized and in unirradiated unsensitized controls were recovered by irradiated presensitized and by irradiated unsensitized mice in about 3 and 4 weeks, respectively. Repeated injections of radiation-inactivated tumor cells were most effective in supporting the immune status of irradiated mice and in promoting an early recovery. Injections of BCG had only an insignificant effect. Injections of normal plasma was effective in reducing the immune suppression but did not promote an earlier recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号