首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Severin  E Seidler 《Cytometry》1992,13(3):322-326
The reduction of tetrazolium salts to colored formazans is a reaction which has been exploited both in histo- and cytochemistry. Tetrazolium salts forming fluorescent formazans prove suitable for measuring defined cellular dehydrogenase activities in automated processes. This study considers an important aspect of formazan measurement in flow cytometry, namely, calibration. Calibration is performed by correlating the number (and fluorescence intensity) of formazan-bearing cells measured by flow cytometry with simultaneously performed biochemical analyses of the same material. The method is demonstrated by an example of glucose-6-phosphate dehydrogenase. Using the data of a typical experiment, the enzyme activity is expressed in femtomol of hydrogen transferred per cell during incubation time. Furthermore, through spatially resolved double excitation of formazan and nuclear DAPI fluorescence, an independent analysis of cell cycle and cellular enzymatic activity is established.  相似文献   

2.
Oxygen insensitivity of carcinoma cells and oxygen sensitivity of non-cancer cells in the histochemical assay of glucose-6-phosphate dehydrogenase (G6PD) enables detection of carcinoma cells in unfixed cell smears or cryostat sections of biopsies. The metabolic background of oxygen insensitivity is still not understood completely. In the present study, rat hepatocytes, rat hepatoma cells (FTO-2B), and human colon carcinoma cells (HT29) were used to elucidate these backgrounds. The residual activity in oxygen was 0%, 55%, and 80% in hepatocytes, hepatoma cells, and colon carcinoma cells, respectively. N-ethylmaleimide (NEM), a blocker of SH-groups, did not affect G6PD activity in both carcinoma cell types but reduced G6PD activity in hepatocytes by 40%. Ultrastructural localization of G6PD activity was exclusively in the cytoplasm of carcinoma cells, but in hepatocytes both in cytoplasm and peroxisomes. NEM abolished peroxisomal G6PD activity only. Histochemical assay of catalase activity demonstrated absence of peroxisomes in both carcinoma cell lines. It is concluded that absence of SH-sensitive G6PD activity in peroxisomes in cancer cells is responsible for the oxygen-insensitivity phenomenon.  相似文献   

3.
We developed a method for accurate cytofluorometric analysis of the final reaction product of enzyme reactions in individual cells. Glucose-6-phosphate dehydrogenase (G6PD) activity in human erythrocytes was demonstrated cytochemically, and the amount of final reaction product (formazan) per cell was detected indirectly by quenching of autofluorescence generated by glutaraldehyde fixation. Formazan quenches fluorescence in a dose-dependent manner. The method has been used for detection of G6PD deficiency. Heterozygous and homo(hemi)zygous deficiency could easily be established, even in cases of extreme "Lyonization" where microscopic inspection failed to discriminate between either normal individuals and heterozygously deficient patients or heterozygously and homozygously deficient patients. The principle of quenching of fluorescence by final reaction products of enzymes can be applied to flow cytofluorometric analysis of enzyme activity in individual cells in general.  相似文献   

4.
Summary The precise histochemical localization and quantification of the activity of soluble dehydrogenases in unfixed cryostat sections requires the use of tissue protectants. In this study, two protectants, polyvinyl alcohol (PVA) and agarose gel, were compared for assaying the activity of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) in normal female mouse liver. Quantification of enzyme activity was determined cytophotometrically in periportal (PP), pericentral (PC) and midzonal (MZ) areas. No coloured reaction product was present in PVA media after the incubation period. In contrast, the agarose gels appeared to be highly coloured after incubation. As a consequence, sections incubated with gel media were less intensely stained than those incubated in PVA-containing media. The specific G6PDH reaction (test minus control) yielded approximately 75% less formazan in sections incubated by the agarose gel method than with the PVA method. Further, the amount of formazan deposits attributable to G6PDH activity was highest in the midzonal and pericentral zones of the liver lobule with PVA media, and Kupffer cells could be discriminated easily because of their high G6PDH activity. Significant zonal differences or Kupffer cells could not be observed when agarose gel films were used for the detection of G6PDH activity. The LDH localization patterns appeared to be more uniform after incubation with both methods: no significant differences in specific test minus control reactions were seen between PP, PC and MZ. However, less formazan production (33%) was detected in sections incubated with agarose gels when compared with those incubated with PVA media. These results clearly show that the gel method is not suitable for the valid demonstration of activity of (partially) soluble enzymes. Furthermore, our results confirm that a greater proportion of G6PDH than of LDH is present in a soluble form in liver cells.  相似文献   

5.
A fluorescence-based microplate assay was developed to quantify cell death based upon the measurement of glucose-6-phosphate dehydrogenase (G6PD) activity. G6PD is a cytosolic enzyme and leaks from cells when plasma membrane integrity is compromised. In this assay, cell death is measured by correlating the activity of extracellular G6PD to the reduction of resazurin to the fluorescent product, resorufin, via a coupled-enzyme reaction. The coupled-enzyme reaction permits rapid signal amplification from small amounts of G6PD, an advantage over assays based on resazurin alone. This assay is rapid, nontoxic, and amenable to high-throughput screening. The assay has a Z' factor of 0.78.  相似文献   

6.
Some of the critical steps in the qualitative histochemical localization of glucose-6-phosphate dehydrogenase (freezing procedures, incubation techniques and the influence of intermediate electron carriers, respiratory chain inhibitors and different tetrazolium salts) were evaluated in sections of bovine testis as a prerequisite for the microdensitometric estimation of the activity of the enzyme in bovine Leydig cells in situ. A modification of the gel incubation method of Rieder et al. (1978) gave the best results and was used for the quantitative investigations. Quantitative data for the dehydrogenase activity gained from microdensitometry of the formazan final reaction products in Leydig cells in situ were compared with the results of assays of the activity in homogenates of testis. The following apparent kinetic properties of glucose-6-phosphate dehydrogenase were obtained for the enzyme in Leydig cells in situ: Vmax = 0.11 absorbance units/min, Km = 0.37 mM. The quantitative characterization of glucose-6-phosphate activity in Leydig cells in situ appears to be suitable for combined morphological and functional diagnoses of small tissue samples such as testicular biopsies. This would give valuable information of the functional status of Leydig cells in normal and diseased testicular tissue.  相似文献   

7.
葡糖-6-磷酸脱氢酶(G6PD)在许多肿瘤细胞中高表达,但其发生的作用机理目前仍然不明确.以正常人表皮黑色素细胞(HEM)、野生型人黑色素瘤A375细胞(A375-WT)和G6PD缺陷的A375细胞(A375-G6PDΔ)为对象,经real-time PCR、Western印迹和紫外分光光度法分析显示,A375-WT细胞的mRNA、G6PD蛋白和G6PD活性分别是HEM细胞的1.89倍(P0.05)、6.86倍(P0.01)和2.30倍(P0.05).Annexin V/PI流式细胞仪和Western印迹测定表明,A375-G6PDΔ的凋亡率是A375-WT的5.10倍(P0.01),活化半胱氨酸蛋白酶3(caspase-3)增高1.84倍(P0.01)以及89 kD多聚二磷酸腺苷核糖聚合酶-1(PARP-1)生成增加2.87倍(P0.01).分光光度法分析显示,A375-G6PDΔ的NADPH和GSH分别降低了72.30%(P0.01)和27.39%(P0.05),并伴有75.43%的H2O2增高(P0.01).结果提示,G6PD在黑色素瘤细胞中高表达和高活性,而敲减G6PD表达通过caspase-3和PARP-1信号诱发人黑色素瘤细胞凋亡,这为深入揭示黑色素瘤的发生机理提供了新思路。  相似文献   

8.
Summary This study was performed to elaborate the best conditions for measuring the redox activity of Ehrlich ascites tumour cells by using a new tetrazolium salt, cyantolyl tetrazolium chloride (CTC). This tetrazolium salt forms a fluorescent water-insoluble formazan on reduction on the surface of intact vital cells. The influences of fixation and of various substrates and electron carriers on the cellular reduction of CTC were investigated quantitatively using an elution technique. The amount of formazan obtained after incubating vital cells with Meldola Blue as electron carrier was greater than that obtained with Methylene Blue, menadione, 2,6-dichloroindophenol, 1-methoxyphenazine methosulphate or phenazine methosulphate. Using flow cytometry, the formazan production per cell and, after staining the nuclear DNA, the distribution of the redox activity in the cell population can be visualized with satisfactory resolution. We conclude from our findings that dehydrogenases are only partially involved in the reduction of tetrazolium salts by intact cells and that a redox activity, probably related to a cell membrane-bound NAD(P)H—oxidase system, is mainly measured.  相似文献   

9.
The tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) has been widely applied to assess microbiological activity in environmental samples. CTC reduction has previously been quantified in a variety of anaerobic systems (i.e., fermentative, nitrate reducing, sulfate reducing) using direct microscopy, solvent extraction, and flow cytometry. In this work, extracellular CTC reduction was observed and distinguished from its intercellular counterparts by the amorphous character and near uniform fluorescence of the resulting formazan precipitates (CTF). Fluorescence yielded by non-cellular-associated formazan precipitates bleached much more rapidly than CTF formed within cells under identical UV exposure (<2 min). Dehydrogenase activity assays and fluorescent in situ hybridization (FISH) were simultaneously carried out in microcosms containing active anaerobic digester biomass, propylene glycol, and settled sewage centrate for direct comparison. In substrate limited microcosms, quantitative FISH measurements remained well above their detection limit indicating sustained intercellular ribosomal RNA concentrations over a 5-day period, while dehydrogenase assays (CTC) decreased to background levels within 14 h of substrate limitation. Results from this work suggest that CTC reduction in cell-free samples may impede accurate enzyme activity measurements, particularly when quantification involves solvent extraction, flow cytometry, or software-aided counting. In addition, activity assessment in anaerobic digesters using FISH and CTC reduction assays may be comparable until substrate becomes limited.  相似文献   

10.
We studied the effect of section thickness on the reaction rate of glucose-6-phosphate dehydrogenase (G6PD) activity in unfixed sections of rat liver by use of continuous monitoring by microdensitometry of the reaction product as it formed in the section during incubation. Tetranitro BT or nitro BT was used as final electron acceptor and polyvinyl alcohol as tissue stabilizer. Each test minus control reaction curve deviated from linearity during the first 2 min of incubation. This was mainly due to loss of low molecular weight endogenous dehydrogenase substrates from the surface of the section. For any given reaction, the same absolute amount of endogenous substrate was lost from each section, and hence a much greater proportion was lost from the thinner sections. Such losses lead to a deficit in (nonspecific) formazan production. There was a greater loss from, and hence a greater deficit in, formazan production in sections incubated at 30 degrees C than at 37 degrees C and when nitro BT was used instead of tetranitro BT, but the greatest loss of endogenous substrates occurred in sections incubated in control media. Therefore, greater losses seemed to occur when the reactions were slower because of failure to overcome the critical supersaturation level of the formazan. A consequence of this was a non-linear test minus control response during the first minutes of the incubation.  相似文献   

11.
Kinetic and electrophoretic properties of 230--300 fold purified preparations of glucose-6-phosphate dehydrogenase (G6PD) from red cells of donors and patients with acute drug hemolytic anemia due to G6PD deficiency were studied. A new abnormal variant of G6PD isolated from red cell of a patient with acute drug hemolytic anemia, which was not described in literature, has been discovered. The abnormal enzyme differs from the normal by decreased Michaelis constant for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP), by increased utilization of analogues of substrates--2-deoxy-glucose-6-phosphate and particularly deamino-NADP, by low thermal stability, by the character of pH-dependence, by the appearance of a single band of G6PD activity in polyacrylamide gel electrophoresis.  相似文献   

12.
Biosynthesis of steroid hormones in the cortex of the adrenal gland takes place in smooth endoplasmic reticulum and mitochondria and requires NADPH. Four enzymes produce NADPH: glucose-6-phosphate dehydrogenase (G6PD), the key regulatory enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD), the third enzyme of that pathway, malate dehydrogenase (MDH), and isocitrate dehydrogenase (ICDH). However, the contribution of each enzyme to NADPH production in the cortex of adrenal gland has not been established. Therefore, activity of G6PD, PGD, MDH, and ICDH was localized and quantified in rat adrenocortical tissue using metabolic mapping, image analysis, and electron microscopy. The four enzymes have similar localization patterns in adrenal gland with highest activities in the zona fasciculata of the cortex. G6PD activity was strongest, PGD, MDH, and ICDH activity was approximately 60%, 15%, and 7% of G6PD activity, respectively. The K(m) value of G6PD for glucose-6-phosphate was two times higher than the K(m) value of PGD for phosphogluconate. As a consequence, virtual flux rates through G6PD and PGD are largely similar. It is concluded that G6PD and PGD provide the major part of NADPH in adrenocortical cells. Their activity is localized in the cytoplasm associated with free ribosomes and membranes of the smooth endoplasmic reticulum, indicating that NADPH-demanding processes related to biosynthesis of steroid hormones take place at these sites. Complete inhibition of G6PD by androsterones suggests that there is feedback regulation of steroid hormone biosynthesis via G6PD.  相似文献   

13.
The respiratory activity of marine bacteria is an important indication of the ecological functioning of these organisms in marine ecosystems. The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) is reduced intracellularly in respiring cells to an insoluble, fluorescent precipitate. This product is detectable and quantifiable by flow cytometry in individual cells. We describe here an evaluation of flow cytometry for measuring CTC activity in natural assemblages of marine bacteria growing in dilution cultures. We found that more CTC-positive cells are detected by flow cytometry than by visual epifluorescence microscopy. Samples can be stored refrigerated or frozen in liquid nitrogen for at least 4 weeks without a significant loss of total cells, CTC-positive cells, or CTC fluorescence. Cytometry still may not detect all active cells, however, since the dimmest fluorescing cells are not clearly separated from background noise. Reduction of CTC is very fast in most active cells, and the number of active cells reaches 80% of the maximum number within 2 to 10 min. The proportion of active cells is correlated with the growth rate, while the amount of fluorescence per cell varies inversely with the growth rate. The CTC reduction kinetics in assemblages bubbled with nitrogen and in assemblages bubbled with air to vary the oxygen availability were the same, suggesting that CTC can effectively compete with oxygen for reducing power. A nonbubbled control, however, contained more CTC-positive cells, and the amount of fluorescence per cell was greater. Activity may have been reduced by bubble-induced turbulence. Addition of an artificial reducing agent, sodium dithionite, after CTC incubation and fixation resulted in a greater number of positive cells but did not "activate" a majority of the cells. This indicated that some of the negative cells actually transported CTC across their cell membranes but did not reduce it to a detectable level. Automated analysis by flow cytometry allows workers to study single-cell variability in marine bacterioplankton activity and changes in activity on a small temporal or spatial scale.  相似文献   

14.
A new method for enzyme cytochemical studies on individual cells is developed. Cells are incorporated in the matrix of a thin film of transparent polyacrylamide prior to incubation in a cytochemical medium. Five different kinds of individual cells, i.e. isolated rat hepatocytes, isolated mouse oocytes, cultivated human fibroblasts, rat thymocytes and human blood cells are used for testing the applicability of this method for the cytochemical demonstration of glucose-6-phosphate dehydrogenase with tetranitro BT. The incorporation technique solves at least some of the problems occurring with enzyme cytochemistry on single cells. The morphology of the cell is very well preserved, the formazan precipitation due to enzyme activity occurs entirely within the cell cytoplasm, the nothing dehydrogenase activity can be kept very low and the loss of cells is completely prevented with all cell types used.  相似文献   

15.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant with severe erythrocytic G6PD deficiency and a unique pH optimum is described in a young patient with chronic nonspherocytic hemolytic anemia (CNSHA) and familial amyloidotic polyneuropathy (FAP). Chronic hemolysis was present in the absence of infections, oxidant drugs or ingestion of faba beans. Residual enzyme activity was about 2.6% and 63% of normal activity in erythrocytes and leucocytes, respectively. A molecular study using standard methods showed G6PD in the patient to have normal electrophoretic mobility (at pH 7.0, 8.0 and 8.8), normal apparent affinity for substrates (Km, G6P and NADP) and a slightly abnormal utilization of substrate analogues (decreased deamino-NADP and increased 2-deoxyglucose-6-phosphate utilization). Heat stability was found to be markedly decreased (8% of residual activity after 20 min of incubation at 46°C) and a particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH. Although molecular characteristics of this variant closely resemble those of G6PD Bangkok and G6PD Duarte, it can be distinguished from these and all other previously reported variants by virtue of its unusual pH curve. Therefore the present variant has been designated G6PD Clinic to distinguish it from other G6PD variants previously described.  相似文献   

16.
Two mutant clones of a Chinese hamster ovary cell line deficient in glucose-6-phosphate dehydrogenase (G6PD) activity have been characterized. In each case, there is evidence that a structural gene mutation has taken place. The first mutant produces 11% specific enzyme activity compared to wild-type parental cells, but this residual activity is much more heat sensitive than that of the wild type. The second mutant contains no residual activity, but a revertant was isolated that exhibits a partial restoration of G6PD activity with, again, an increased heat sensitivity. The selection of G6PD+ cells from G6PD- populations can be effected by exploiting the increased sensitivity of the latter to diamide, a compound that depletes the cell of reduced glutathione.  相似文献   

17.
A simple screening procedure for the detection of adenilate kinase (AK), hexokinase (Hx) or glucose-6-phosphate dehydrogenase (G6PD) deficiencies in blood, is described. It consists of two assays : in the first, the ATP formed by blood AK is coupled to Hx and G6PD, and in the second, the glucose-6-phosphate formed by blood Hx is coupled to G6PD. The enzyme activities are visually estimated by the reduction of NADP+ (non-fluorescent) to NADH (fluorescent). The appearance of fluorescence in the first assay indicates that the three enzyme activities are present. The absence of fluorescence could be due to the deficiency of any one of the three enzymes; in this case the second assay used in combination with the Beutler's screening test for G6PD permits the detection of the specific enzymatic deficiency.  相似文献   

18.
19.
Erythrocytes of individuals with increased (+ 50%) or reduced (-35%) hexokinase activity contain respectively 70 and 17 nmole/ml RBC of glucose-6-phosphate (normal concentration 30 +/- 5nmole/ml RBC) and show comparable rates of the HMP (60 +/- 5nmole/hr/ml RBC). Similarly, in RBC of different ages, obtained by density gradient ultracentrifugation, the glucose-6-phosphate concentration range from 57 (young cells) to 18 (old cells) nmole/ml RBC but the rate at which glucose is utilized in the HMP is unchanged. These data exclude a regulatory role of glucose 6-phosphate in the HMP even if its concentration is under that required for maximal G6PD activity.  相似文献   

20.
Summary We produced somatic cell hybrids between HT 1080-6TG human fibrosarcoma cells and either rat white blood cells (WBC) or cells directly derived from rat spleen. Karyologic and isozyme analyses of hybrid cells indicated that they preferentially lose rat chromosomes. Hypoxanthine-aminopterine thymidine-selected hybrid clones expressing rat hypoxanthine phosphoribosyltransferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), and phosphoglycerate kinase (PGK) and containing the rat X chromosome were counterselected in a medium containing 30 g/ml of 6-thioguanine. Concordant loss of the rat X chromosome and of the expression of rat HPRT and G6PD was observed in the hybrid clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号