首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Studies on origins of DNA replication in mammalian cells have long been hampered by a lack of methods sensitive enough for the localization of such origins in chromosomal DNA. We have employed a new method for mapping origins, based on polymerase chain reaction amplification of nascent strand segments, to examine replication initiated in vivo near the c-myc gene in human cells. Nascent DNA, pulse-labeled in unsynchronized HeLa cells, was size fractionated and purified by immunoprecipitation with anti-bromodeoxyuridine antibodies. Lengths of the nascent strands that allow polymerase chain reaction amplification were determined by hybridization to probes homologous to amplified segments and used to calculate the position of the origin. We found that DNA replication through the c-myc gene initiates in a zone centered approximately 1.5 kilobases upstream of exon I. Replication proceeds bidirectionally from the origin, as indicated by comparison of hybridization patterns for three amplified segments. The initiation zone includes segments of the c-myc locus previously reported to drive autonomous replication of plasmids in human cells.  相似文献   

2.
Mapping replication origins in yeast chromosomes.   总被引:8,自引:0,他引:8  
The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.  相似文献   

3.
High-throughput mapping of origins of replication in human cells   总被引:1,自引:0,他引:1  
Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.  相似文献   

4.
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.  相似文献   

5.
We describe a sensitive method for mapping replication initiation sites near regions of sequenced genomic DNA in vivo. It is based on selective amplification of sets of segments in purified nascent DNA strands and subsequent determination of the lengths of these strands required to include each member of the set. We demonstrate the ability of this method to accurately map a well-defined origin, that of replicating SV40 DNA. Pulse-labeled DNA from infected CV-1 cells was size-fractionated on an alkaline sucrose gradient and newly-synthesized strands purified by immunoprecipitation using anti-BrdU antibodies. Three pairs of synthetic oligonucleotide primers were used to amplify three SV40 segments, using the polymerase chain reaction (PCR), at known distances from the origin. Lengths of the nascent DNA strands that allow amplification were determined by hybridization to probes homologous to the amplified segments and used to calculate position of the origin. Experiments with a mix of SV40 and human HeLa cell DNA demonstrate the applicability of the method to mapping origins present at the level of single-copy genomic sequences in mammalian cells.  相似文献   

6.
We isolated four fragments from the Schizosaccharomyces pombe genome that mediate autonomous replication. A two-dimensional gel analysis revealed that in each case initiation could be mapped to within the S. pombe sequences. In three of the fragments, initiation could be mapped to one discrete location. In the fourth fragment, subcloning and two-dimensional gel analysis suggested that two discrete origins of replication were located within 3 kb of each other. When in proximity, usually only one of these origins fired, suggesting origin interference. Two-dimensional gel analysis of the four origin fragments at their genomic locations demonstrated that each is used in the chromosomes, but in only a subset of cells or cell divisions. The S. pombe genome appears to contain many discrete origins, not all of which fire in any given cell and some of which are closely spaced. Not I/Sfi I mapping of the five origins from this and a previous study indicates that they are randomly distributed throughout the genome and appear to be representative of chromosomal origins of replication in this organism. We compare the features of S. pombe replication origins with those of S. cerevisiae and animal cells.  相似文献   

7.
During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.  相似文献   

8.
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.  相似文献   

9.
Origins and complexes: the initiation of DNA replication   总被引:6,自引:0,他引:6  
Eukaryotic DNA is organized for replication as multiple replicons. DNA synthesis in each replicon is initiated at an origin of replication. In both budding yeast, Saccharomyces cerevisiae and fission yeast, Schizosaccharomyces pombe, origins contain specific sequences that are essential for initiation, although these differ significantly between the two yeasts with those of S. pombe being more complex then those of S. cerevisiae. However, it is not yet clear whether the replication origins of plants contain specific essential sequences or whether origin sites are determined by features of chromatin structure. In all eukaryotes there are several biochemical events that must take place before initiation can occur. These are the marking of the origins by the origin recognition complex (ORC), the loading onto the origins, in a series of steps, of origin activation factors including the MCM proteins, and the initial denaturation of the double helix to form a replication "bubble". Only then can the enzymes that actually initiate replication, primase and DNA polymerase-alpha, gain access to the template. In many cells this complex series of events occurs only once per cell cycle, ensuring that DNA is not re-replicated within one cycle. However, regulated re-replication of DNA within one cell cycle (DNA endoreduplication) is relatively common in plants, indicating that the "once-per-cycle" controls can be overridden.  相似文献   

10.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

11.
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.  相似文献   

12.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

13.
A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in cellular chromosomes, we have begun to characterize functionally homologous proteins from the yeast Saccharomyces cerevisiae. RFC from S. cerevisiae was purified by its ability to stimulate yeast DNA polymerase delta on a primed single-stranded DNA template in the presence of yeast PCNA and RPA. Like its human-cell counterpart, RFC from S. cerevisiae (scRFC) has an associated DNA-activated ATPase activity as well as a primer-template, structure-specific DNA binding activity. By analogy with the phage T4 and SV40 DNA replication in vitro systems, the yeast RFC, PCNA, RPA, and DNA polymerase delta activities function together as a leading-strand DNA replication complex. Now that RFC from S. cerevisiae has been purified, all seven cellular factors previously shown to be required for SV40 DNA replication in vitro have been identified in S. cerevisiae.  相似文献   

14.
Replication origins in eukaryotic cells never fire more than once in a given S phase. Here, we summarize the role of cyclin-dependent kinases in limiting DNA replication origin usage to once per cell cycle in the budding yeast Saccharomyces cerevisiae. We have examined the role of different cyclins in the phosphorylation and regulation of several replication/regulatory factors including Cdc6, Sic1, ORC and DNA polymerase alpha-primase. In addition to being regulated by the cell cycle machinery, replication origins are also regulated by the genome integrity checkpoint kinases, Mec1 and Rad53. In response to DNA damage or drugs which interfere with the progression of replication forks, the activation of late-firing replication origins is inhibited. There is evidence indicating that the temporal programme of origin firing depends upon the local histone acetylation state. We have attempted to test the possibility that checkpoint regulation of late-origin firing operates through the regulation of the acetylation state. We found that overexpression of the essential histone acetylase, Esal, cannot override checkpoint regulation of origin firing. We have also constructed a temperature-sensitive esa1 mutant. This mutant is unable to resume cell cycle progression after alpha-factor arrest. This can be overcome by overexpression of the G1 cyclin, Cln2, revealing a novel role for Esal in regulating Start.  相似文献   

15.
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.  相似文献   

16.
17.
Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.  相似文献   

18.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

19.
Recently, two 2-dimensional (2D) gel techniques, termed neutral/neutral and neutral/alkaline, have been developed and employed to map replication origins in eukaryotic plasmids and chromosomal DNA (1-11). The neutral/neutral technique, which requires less DNA for analysis, has been preferentially used in recent studies. We show here that the signal predicted for an origin is not detected using the neutral/neutral technique if the origin is located near the end of the analyzed restriction fragment. We also demonstrate that analysis of the same batch of DNA by the two different mapping techniques can generate apparently contradictory results: in some situations where neutral/alkaline 2D analysis indicates that a certain origin is always used, neutral/neutral 2D analysis suggests that the origin is not always used. Several possible explanations for this type of disagreement between the two techniques are discussed, and we conclude that it is important to use both techniques in combination in order to minimize possible misinterpretations.  相似文献   

20.
Chatre L  Ricchetti M 《PloS one》2011,6(3):e17235
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号