首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humans and guinea pigs are species which are unable to synthesize ascorbic acid (vitamin C) because, unlike rodents, they lack the enzyme L-gulonolactone oxidase (Gulo). Although the phenotype of lacking vitamin C in humans, named scurvy, has long been well known, information on the impact of lacking Gulo on the gene expression profiles of different tissues is still missing. This knowledge could improve our understanding of molecular pathways in which Gulo may be involved. Recently, we discovered a deletion that includes all 12 exons in the gene for Gulo in the sfx mouse, characterized by spontaneous bone fractures. We report here the initial analysis of the impact of the Gulo gene deletion on the murine gene expression profiles in the liver, femur and kidney.  相似文献   

2.
The murine nuclear protein Np95 has been shown to underlie resistance to ionizing radiation and other DNA insults or replication arrests in embryonic stem (ES) cells. Using the databases for expressed sequenced tags and a two-step PCR procedure, we isolated human NP95, the full-length human homologue of the murine Np95 cDNA, which consists of 4,327 bp with a single open reading frame (ORF) encoding a polypeptide of 793 amino acids and 73.3% homology to Np95. The ORF of human NP95 cDNA is identical to the UHRF1 (ubiquitin-like protein containing PHD and RING domain 1). The NP95 gene, assigned to 19p13.3, consists of 18 exons, spanning 60 kb. Several stable transformants from HEK293 and WI-38 cells that had been transfected with the antisense NP95 cDNA were, like the murine Np95-knockout ES cells, more sensitive to X rays, UV light and hydroxyurea than the corresponding parental cells. In HEK293 cells, the lack of NP95 did not affect the activities of topoisomerase IIalpha, whose expression had been demonstrated to be regulated by the inverted CCAAT box binding protein of 90 kDa (ICBP90) that closely resembles NP95 in amino acid sequence and in cDNA but differs greatly in genomic organization. These findings collectively indicate that the human NP95 gene is the functional orthologue of the murine Np95 gene.  相似文献   

3.
目的:构建人P2X7基因的真核表达载体,并通过转染获得稳定表达P2X7分子的HEK293细胞株。方法:以人脑组织P2X7cDNA为模板扩增出P2X7基因,插入到真核表达载体pEGFP-N1中,构建重组质粒pEGFP-N1/P2X7。用X-fect试剂盒将重组质粒转染HEK293细胞,通过G418辅助荧光筛选建立稳定表达P2X7-EGFP细胞株。经流式细胞仪、Western blot和激光共聚焦显微镜检测,了解人P2X7在HEK293细胞中的表达水平及细胞内定位。结果:重组质粒pEGFP-N1/P2X7构建正确,建立了稳定表达人P2X7的HEK293细胞系。Western blot和流式细胞仪检测证实,P2X7在HEK293细胞系中成功表达,激光共聚焦显微镜检测显示P2X7-EGFP定位在细胞膜上。结论:重组载体pEGFP-N1/P2X7构建成功并建立了稳定表达人P2X7的HEK293细胞系,为进一步研究P2X7离子通道结构和功能奠定基础。  相似文献   

4.
Thymus-expressed chemokine (TECK) has been reported to chemoattract dendritic cells, thymocytes, and activated macrophages. Here, we show that TECK is a specific agonist for a human orphan receptor called GPR-9-6. We have determined the cDNA sequence of human GPR-9-6 and cloned the corresponding murine cDNA. Human and murine GPR-9-6 expression is very high in the thymus and low in lymph nodes and spleen. RT-PCR analysis of murine GPR-9-6 expression on murine FACS-sorted thymocyte subpopulations showed that this gene is expressed in both immature and mature T cells. Additions of human or murine TECK to HEK 293/human GPR-9-6 and HEK 293/murine GPR-9-6 transfectants provoked intracytoplasmic calcium mobilization. Human TECK also induced the in vitro migration of HEK 293/human GPR-9-6 cells. These results confirm that GPR-9-6 is a specific receptor for TECK. According to the established nomenclature system, we propose to rename GPR-9-6 as CC chemokine receptor 9 (CCR9).  相似文献   

5.
Organisms using oxygen for aerobic respiration require antioxidants to balance the production of reactive oxygen species during metabolic processes. Various species--including humans and other primates--suffer mutations in the GULO gene encoding L-gulono-γ-lactone oxidase; GULO is the rate-limiting enzyme in the biosynthesis of ascorbate, an important cellular antioxidant. Animals lacking the ability to synthesize vitamin C develop scurvy without dietary supplementation. The Gulo-/- knockout (KO) mouse requires oral supplemental vitamin C; without this supplementation the animal dies with a scorbutic condition within several weeks. Vitamin C is known to be most abundant in the brain, where it is believed to play important roles in neuroprotection, neurotransmission and neuromodulation. We therefore hypothesized that ascorbate deficiency in Gulo-/- KO mice might lead to an abnormal behavioral phenotype. We established the amount of ascorbate in the drinking water (220 ppm) necessary for generating a chronic low-ascorbate status in the brain, yet clinically the mice appeared healthy throughout 100 days postpartum at which time all behavioral-phenotyping tests were completed. Compared with Gulo+/+ wild-type littermates, ascorbate-deficient Gulo-/- mice were found to be less active in moving in their environment; when in water, these mice swam more slowly in some tests, consistent with a mild motor deficit. We found no evidence of cognitive, anxiety or sensorimotor-gating problems. Despite being less active, Gulo-/- mice exhibited exaggerated hyperactivity to the dopaminergic agonist methamphetamine. The subnormal movement, combined with hypersensitivity to a dopamine agonist, point to developmental ascorbate deficiency causing long-term striatal dysfunction.  相似文献   

6.
Vitamin C deficient pigs, when fed a diet lacking L-ascorbic acid (AscA), manifest deformity of the legs, multiple fractures, osteoporosis, growth retardation and haemorrhagic tendencies. This trait was shown by others to be controlled by a single autosomal recessive allele designated as od (osteogenic disorder). The inability of AscA biosynthesis in primates and guinea pigs that exhibit similar symptoms, when they are not supplemented with AscA in the food, was traced to the lack of L-gulono-gamma-lactone oxidase, which catalyzes the terminal step in the biosynthesis of AscA. The non-functional GULOP was mapped to human chromosome 8p21 that corresponds to an evolutionarily conserved segment on either porcine chromosome 4 (SSC4) or 14 (SSC14). We investigated linkage between OD and SSC4- and 14-specific microsatellite loci in order to map the OD locus. Twenty-seven informative meioses in families from one sire and three dams revealed linkage of od with microsatellites SW857 and S0089, located in the subcentromeric region of SSC14. We isolated part of the GULO gene of the pig by screening a porcine genomic library using a pig GULO cDNA as a probe, and mapped it to SSC14q14 by fluorescence in situ hybridization (FISH). Thus, the porcine GULO gene is both a good physiological and positional candidate gene for vitamin C deficiency in pigs.  相似文献   

7.
目的构建和鉴定HAX1和EGFP双基因共表达重组腺病毒载体。方法采用DNA重组技术,将目的基因HAX1克隆至含有报告基因EGFP的穿梭质粒pAdTrack—CMV中,并转化于大肠埃希菌DH5a;筛选出重组质粒pAdTrack—CMV—HAX1,并在BJ5183细菌中与pAdEasy-1质粒进行同源重组,产生重组腺病毒载体;用lipofectamine将其转染HEK293细胞,包装携带全长HAX1的重组复制缺陷型腺病毒pad—HAX1-EGFP,酶切和序列测定鉴定;用制备好的Ad—HAX1-EGFP感染HEK293细胞,流式细胞术检测其感染效率,RT—PCR、Western印迹鉴定外源基因HAX1的表达。BrdU检测感染了Ad—HAX1-EGFP的HEK293细胞增殖情况。结果pAdTrack—CMV—HAX1重组质粒构建成功。pAdTrack—CMV—HAX1质粒与pAdEasy-1质粒同源重组后与预期结果相符。构建好的Ad—HAX1-EGFP能有效感染HEK293细胞;外源基因能在239细胞中有效表达。HAX1高表达的HEK293细胞其增殖率得以提高。结论成功构建了表达HAX1和EGFP共表达的重组腺病毒载体,HAX1能够促进结肠癌细胞HEK293细胞的增殖。  相似文献   

8.
Cui J  Yuan X  Wang L  Jones G  Zhang S 《PloS one》2011,6(11):e27114
The traditional assumption that bats cannot synthesize vitamin C (Vc) has been challenged recently. We have previously shown that two Old World bat species (Rousettus leschenaultii and Hipposideros armiger) have functional L-gulonolactone oxidase (GULO), an enzyme that catalyzes the last step of Vc biosynthesis de novo. Given the uncertainties surrounding when and how bats lost GULO function, exploration of gene evolutionary patterns is needed. We therefore sequenced GULO genes from 16 bat species in 5 families, aiming to establish their evolutionary histories. In five cases we identified pseudogenes for the first time, including two cases in the genus Pteropus (P. pumilus and P. conspicillatus) and three in family Hipposideridae (Coelops frithi, Hipposideros speoris, and H. bicolor). Evolutionary analysis shows that the Pteropus clade has the highest ω ratio and has been subjected to relaxed selection for less than 3 million years. Purifying selection acting on the pseudogenized GULO genes of roundleaf bats (family Hipposideridae) suggests they have lost the ability to synthesize Vc recently. Limited mutations in the reconstructed GULO sequence of the ancestor of all bats contrasts with the many mutations in the ancestral sequence of recently emerged Pteropus bats. We identified at least five mutational steps that were then related to clade origination times. Together, our results suggest that bats lost the ability to biosynthesize vitamin C recently by exhibiting stepwise mutation patterns during GULO evolution that can ultimately lead to pseudogenization.  相似文献   

9.
拟构建汉坦病毒Gl基因重组腺病毒载体并在VeroE6细胞中表达,为汉坦病毒基因疫苗的研究提供实验基础。PCR法从含汉坦病毒-76118株M基因的M56质粒扩增糖蛋白G1基因片段,利用穿梭质粒pShuttle,将其克隆入Adeno—X病毒DNA,获得重组腺病毒DNA,转染HEK293细胞,包装、扩增后得到汉坦病毒Gl基因重组腺病毒原种,感染VetoE6细胞,用IFA法和ELISA法检测表达产物。得到了含汉坦病毒G1基因的重组腺病毒,其滴度约为10^11pfu/ml,感染VeroE6细胞后检测到汉坦病毒糖蛋白G1的表达。  相似文献   

10.
11.
l-Gulono-gamma-lactone oxidase (GULO) is a key enzyme for the biosynthesis of ascorbate, which is essential for several cellular functions. In the present study, mRNA expression of GULO gene was evaluated during the early development of Persian sturgeon. First, because there are no comparative studies that have established suitable quantitative real-time PCR reference genes in sturgeons for any physiological conditions, we evaluated six candidate reference genes (ACTB, RPL13, UBQ, RPL6, GAPDH and EF1A) during the early development of Persian sturgeon. The most stable mRNA expression was obtained with RPL6 and ACTB, whereas the least stable was RPL13. After normalization using RPL6, ACTB and RPL6/ACTB combination, the mRNA expression of GULO was highest at the embryonic stage (2days before hatching; P<0.05) and started to decline from hatching of larvae to the rest of the developmental time-points. This suggests that the vitamin C requirements are highest during early life stages, and it is likely that the changes in GULO mRNA expression are associated with changes in GULO enzyme activity.  相似文献   

12.
目的:构建携带SPRED2的质粒载体与重组腺病毒载体,并观察其在K562细胞的表达及对ERK信号通路的作用,为Spred2在造血细胞中的作用的研究奠定基础。方法:以HepG2细胞cDNA为模板,RT-PCR克隆SPRED2全长CDS序列,并亚克隆到pCDNA3.0和pshuttle-CMV质粒载体,构建携带SPRED2的真核表达载体pCDNA3.0-Spred2与穿梭载体pshuttle-CMV-Spred2;将线性化pshuttle-CMV-Spred2与腺病毒骨架质粒Adf11p在感受态细胞BJ5183中进行同源重组,产生重组质粒Adf11p-Spred2;后者经线性化后转染至HEK293细胞进行病毒包装;在HEK293细胞扩增病毒颗粒,以CsCl密度梯度离心法进行纯化,TCID50法测定病毒滴度;将病毒颗粒以100MOI感染K562细胞,Western blot检测Spred2过表达情况及Spred2对细胞ERK的影响。结果:经酶切、DNA测序、Western blot检测等方法鉴定,证明pCDNA3.0-Spred2与Adf11p-Spred2携带Spred2序列正确,能够在HEK293细胞、K562细胞正确表达,Spred2过表达能够显著抑制K562细胞ERK活性。结论:成功构建对K562细胞有高感染效率的SPRED2重组腺病毒载体,且Spred2对K562细胞ERK信号通路有显著抑制作用。  相似文献   

13.
《Process Biochemistry》2007,42(7):1107-1113
The current demands for adenoviral vectors are increasing to satisfy pre-clinical and clinical gene therapy protocols. Consequently, there is a necessity of methodologies to improve production and recovery of intact particles with the minimum effect upon bioactivity. The production of adenoviral vectors in HEK 293 cells and the potential of an alternative aqueous two-phase system (ATPS) composed of PEG 300-phosphate in recovery of adenoviral vectors were investigated. The production of adenoviral vectors was carried out using a 2 L bioreactor equipped with two Rushton impellers. Different parameters including initial cell density, harvesting time and the addition of a buffer (HEPES) were studied in order to improve the production of adenoviral vectors in HEK 293 cells. A yield of 8 × 1011 infective particles was achieved under the conditions characterized by the addition of Pluronic F-68, inoculation at an initial cell density of 3.5 × 105 cells/mL and harvest of infected cells at 48 h post infection (hpi). This material was used for the evaluation of the ATPS recovery processes. It was demonstrated that the chemical components of the ATPS did not have a significant effect upon the infectivity of the adenoviral vectors and a total recovery of approximately 90% was obtained. These findings contribute to the process development for the manufacture of adenoviral vectors and other nanoparticulate bioproducts.  相似文献   

14.
First-generation, E1/E3-deleted adenoviral vectors with diverse transgenes are produced routinely in laboratories worldwide for development of novel prophylactics and therapies for a variety of applications, including candidate vaccines against important infectious diseases, such as HIV/AIDS, tuberculosis, and malaria. Here, we show, for two different transgenes (both encoding malarial antigens) inserted at the E1 locus, that rare viruses containing a transgene-inactivating mutation exhibit a selective growth advantage during propagation in E1-complementing HEK293 cells, such that they rapidly become the major or sole species in the viral population. For one of these transgenes, we demonstrate that viral yield and cytopathic effect are enhanced by repression of transgene expression in the producer cell line, using the tetracycline repressor system. In addition to these transgene-inactivating mutations, one of which occurred during propagation of the pre-viral genomic clone in bacteria, and the other after viral reconstitution in HEK293 cells, we describe two other types of mutation, a small deletion and a gross rearranging duplication, in one of the transgenes studied. These were of uncertain origin, and the effects on transgene expression and viral growth were not fully characterized. We demonstrate that, together with minor protocol modifications, repression of transgene expression in HEK293 cells during viral propagation enables production of a genetically stable chimpanzee adenovirus vector expressing a malarial antigen which had previously been impossible to derive. These results have important implications for basic and pre-clinical studies using adenoviral vectors and for derivation of adenoviral vector products destined for large-scale amplification during biomanufacture.  相似文献   

15.
For the past 50 years, it was believed that all bats, like humans and guinea pigs, did not synthesize vitamin C (Vc) because they lacked activity of L-gulonolactone oxidase (GULO) in their livers. Humans and guinea pigs lack the activity due to pseudogenization of GULO in their genomes, but there is no genetic evidence to show whether such loss in bats is caused by pseudogenization. Unexpectedly, our successful molecular cloning in one frugivorous bat (Rousettus leschenaultii) and one insectivorous bat (Hipposideros armiger) ascertains that no pseudogenization occurs in these species. Furthermore, we find normal GULO protein expression using bat-specific anti-GULO polyclonal antibodies in bats, evaluated by Western blotting. Most surprisingly, GULO activity assays reveal that these two bat species have retained the ability to synthesize Vc, but at low levels compared with the mouse. It is known that bats in the genus Pteropus have lost GULO activity. We then found that functional constraints acting on the GULO of Pteropus vampyrus (which lost its function) are relaxed. These results imply that the ability to synthesize Vc in bats has not been lost completely in species as previously thought. We also suggest that the evolution of bat GULO genes can be a good model to study genetic processes associated with loss-of-function.  相似文献   

16.
Our laboratory has developed a series of Gateway? compatible lentiviral expression systems for constitutive and conditional gene knock-down and over-expression. For tetracycline-regulated transgenic expression, we constructed a lentiviral “DEST” plasmid (pHR-TetCMV-Dest-IRES-GFP5) containing a tetracycline-responsive minimal CMV promoter, followed by an attP site-flanked DEST cassette (for efficient cloning of cDNAs by “Gateway?” recombination cloning) and green fluorescent protein (GFP) driven by an internal ribosomal entry site (IRES).This lentiviral bicistronic plasmid allows immediate FACS identification and characterization of successfully transfected cell lines. Although this system worked well with several cDNAs, we experienced serious problems with SLA, Bam and BMF. Particularly, we cloned the cDNA for human SLA (Src–like adapter), a candidate gene in GC-induced apoptosis, into this plasmid. The resulting construct (pHR-TetCMV-SLA-IRES-GFP5) was transfected into HEK 293-T packaging cells to produce viral particles for transduction of CEM-C7H2-2C8 cells. Although the construct produced many green fluorescent colonies at the HEK 293-T and the CEM-C7H2-2C8 level, we could not detect any SLA protein with α-SLA antibody from corresponding cell lysates. In contrast, the antibody readily detected SLA in whole cell lysate of HEK 293-T cells transfected with a GST-flagged SLA construct lacking IRES-GFP. To directly address the potential role of the IRES-GFP sequence, we cloned the SLA coding region into pHR-TetCMV-Dest, a vector that differs from pHR-TetCMV-Dest-IRES-GFP5 just by the absence of the IRES-GFP cassette. The resulting pHR-TetCMV-SLA construct was used for transfection of HEK 293-T cells. Corresponding lysates were assayed with α-SLA antibody and found positive. These data, in concert with previous findings, suggest that the IRES-GFP cassette may interfere with translation of certain smaller size cDNAs (like SLA) or generate fusion proteins and entail defective virus production in an unpredictable manner.  相似文献   

17.
The Gateway technology cloning system and transposon technology represent state-of-the-art laboratory techniques. Combination of these molecular tools allows rapid cloning of target genes into expression vectors. Here, we describe a novel Gateway technology-compatible transposon plasmid that combines the advantages of Gateway recombination cloning with the Sleeping Beauty (SB) transposon-mediated transgene integrations. In our system the transposition is catalyzed by the novel hyperactive SB100x transposase, and provides highly efficient and precise transgene integrations into the host genome. A Gateway-compatible transposon plasmid was generated in which the potential target gene can be fused with a yellow fluorescent protein (YFP) tag at the N-terminal. The vector utilizes the CAGGS promoter to control fusion protein expression. The transposon expression vector encoding the YFP-interferon-β protein (IFNB1) fusion protein together with the hyperactive SB100x transposase was used to generate stable cell lines in human embryonic kidney (HEK293) and rat adipose-derived stromal cells (ASC). ASCs and HEK293 cells stably expressed and secreted the human IFNB1 for up to 4 weeks after transfection. The generated Gateway-compatible transposon plasmid can be utilized for numerous experimental approaches, such as gene therapy or high-throughput screening methods in primary cells, representing a valuable molecular tool for laboratory applications.  相似文献   

18.
L C Kühn  A McClelland  F H Ruddle 《Cell》1984,37(1):95-103
We describe the molecular cloning of the human transferrin receptor gene by a gene transfer approach. Mouse Ltk- cells were cotransformed with the herpes simplex thymidine kinase gene and total human DNA. Transformants expressing human transferrin receptor were isolated by selection on hypoxanthine/aminopterin/thymidine (HAT) medium and fluorescence-activated cell sorting of HAT-resistant cells. Thirty-four kilobases of human DNA was isolated by screening a genomic library constructed from the DNA of a secondary transformant. Gene transfer of the cloned DNA established that 31 kb of DNA was sufficient to encode the receptor. A probe from the 5' end of the gene was used to isolate a cDNA clone with an insert of 4.9 kb. Hybridization of the cDNA to the cloned genomic DNA revealed a minimum of 12 exons. They extend over the entire 31 kb of expressing DNA and over 2 kb of adjacent 3' untranslated sequences that are not required for receptor expression in L cells.  相似文献   

19.
目的:扩增先天性免疫中具有重要功能的泛素连接酶TRIM25及其不同结构域的cDNA,构建带有不同标签的融合蛋白载体并进行细胞表达。方法:以TRIM25 cDNA为模板,PCR扩增不同结构域cDNA,扩增产物及载体经酶切、连接后,转化大肠杆菌DH5α,挑克隆,提取重组质粒后酶切鉴定、测序,将测序正确的重组质粒转染293细胞,用Western印迹对融合蛋白的表达进行鉴定。结果:TRIM25、Two-BOX结构域、SPRY结构域以正确读框插入Flag-pcDNA3.0,TRIM25以正确读框插入pCMV-Myc,RING结构域、CDD结构域、Two-BOX结构域以正确读框插入pEGFP-c1,上述重组质粒能够在293细胞中表达。结论:构建了TRIM25及其突变体的重组表达质粒并获得表达,为研究不同RNA病毒通过与TRIM25作用抑制宿主功能提供了基础。  相似文献   

20.
目的:观察脑信号蛋白Sema4C及其相互作用蛋白GIPC的亚细胞定位及两者的荧光共定位情况,为明确Sema4C和GIPC在亚细胞水平的相互作用提供佐证。方法:将Sema4C的基因编码区全长、胞外段和胞内段分别构建到pEGFPNl和pEGFPCI表达载体中,将GIPC编码区基因构建到pDsRed-C1表达载体中,分别转染HEK293细胞,观察亚细胞定位;将pEGFPNl-Sema4C和pDsRed-GIPC分别共转染HEl(293和COS7细胞,观察两者的荧光共定位情况。结果:酶切鉴定及测序结果表明重组载体构建正确,Sema4C蛋白全长和胞外段呈跨膜分布,而胞内段在全细胞中呈弥散样分布;GIPC在胞浆内呈斑块状聚集分布;pEGFPNl-Sema4C和pDsRed-GIPC存在荧光共定位区域。结论:Sema4C主要在胞膜和胞浆内表达,GIPC主要在胞浆内呈斑块样聚集分布;Sema4C和GIPC之间存在荧光共定位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号