首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pluronic F-68 (PF-68) is routinely used as a shear-protection additive in mammalian cell cultures. However, most previous studies of its shear protection mechanisms have typically been qualitative in nature and have not covered a wide range of PF-68 and cell concentrations. In this study, interactions between air bubbles along with the associated cell damage were investigated using the novel adenovirus-producing cell line PER.C6, a human embryonic retinoblast transfected with the adenovirus type 5 E1 gene. A wide range of PF-68 and cell concentrations (approximately 3 orders of magnitude) were used in these studies. At low PF-68 concentrations (0.001 g/L), cells had a very high affinity for bubbles, indicated by a more than 10-fold increase in cell concentration in the foam layer liquid versus the bulk liquid. At high PF-68 concentrations ( approximately 3 g/L), however, the cell concentration in the foam layer liquid was only approximately 40% of that in the bulk cell suspension. The number of cells associated with each bubble decreased from approximately 1000 cells at 0.001 g/L PF-68 to approximately 120 cells at 3 g/L PF-68. Despite the lower cell affinity for bubbles at a high PF-68 concentration, at high cell concentrations (10(7) cells/mL and 1 g/L PF-68) significant cell entrapment occurred in the foam layer, on the order of 1000 cells/bubble. For the cells carried by the bubbles, quantitative cell damage data revealed that the probability of cell death from bubble rupture was independent of bulk cell concentration but was affected by PF-68 concentration. These quantitative studies further indicated that even at a low PF-68 concentration of 0.03 g/L, approximately 30% of the attached cells were killed during the bubble rupture process. At the same time, at low PF-68 concentration (<0.1 g/L), significant cell death occurred prior to bubble rupture. On average, a bubble disrupted more cells in the bulk liquid and/or foam layer than during rupture. For both mechanisms, the number of cells damaged by each bubble increased with decreasing PF-68 concentration and increasing bulk cell concentration.  相似文献   

2.
Pluronic F-68 is a widely used protective agent in sparged animal cell bioreactors. In this study, the attachment-independent Spodoptera frugiperda Sf9 insect cell line was used to explore the mechanism of this protective effect and the nature of cell damage in sparged bioreactors. First, bubble incorporation via cavitation or vortexing was induced by increasing the agitation rate in a surface-aerated bioreactor; insect cells were rapidly killed under these conditions of the absence of polyols. Supplementing the medium with 0.2% (w/v) Pluronic F-68, however, fully protected the cells. Next, cell growth was compared in two airlift bioreactors with similar geometry but different sparger design; one of these bioreactors consisted of a thin membrane distributor, while the other consisted of a porous stainless steel distributor. The flow rates and bubble sizes were comparable in the two bioreactors. Supplementing the medium with 0.2% (w/v) Pluronic F-68 provided full protection to cells growing in the bioreactor with the membrane distributor but provided essentially no protection in the bioreactor with the stainless steel distributor. These results strongly suggest that cell damage can occur in the vicinity of the gas distributor. In addition, these results demonstrate that bubble size and gas flow rate are not the only important considerations of cell damage in sparged bioreactors. A model of cell death in sparged bioreactors is presented.  相似文献   

3.
It is proposed that when cells are either attached to, or very near, a rupturing bubble, the hydrodynamic forces associated with the rupture are sufficient to kill the cells. Four types of experiments were conducted to quantify the number and location of these killed cells. We determined: (1) the number of cells killed as a result of a single, 3.5-mm bubble rupture; (2) the number and viability of cells in the upward jet that results when a bubble ruptures; (3) the number of cells on the bubble film; and (4) the fate of cells attached to the bubble film after film rupture. All experiments were conducted with Spodoptera frugiperda (SF-9) insect cells, in TNM-FH and SFML medium, with and without Pluronic F-68. Experiments indicate that approximately 1050 cells are killed per single, 3.5-mm bubble rupture in TNM-FH medium and approximately the same number of dead cells are present in the upward jet. It was also observed that the concentration of cells in this upward jet is higher than the cell suspension in TNM-FH medium without Pluronic F-68 by a factor of two. It is believed that this higher concentration is the result of cells adhering to the bubble interface. These cells are swept up into the upward jet during the bubble rupture process. Finally, it is suggested that a thin layer around the bubble containing these absorbed cells is the "hypothetical killing volume" presented by other researchers. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Summary The effects of the non-ionic surfactant, Pluronic F-68, on growth and structure ofSolanum dulcamara cells in suspension culture have been studied. Growth of cells, as measured by dry weight, was unaffected by low concentrations (0.01–1.0% w/v) of pluronic, while culture with higher concentrations (2.5–10.0%) resulted in cell death. It is suggested that low concentrations of pluronic may be valuable supplements in plant cell cultures to protect against mechanical damage and to manipulate membrane systems.  相似文献   

5.
It is well known that bubble rupture has a detrimental effect on mammalian cells. As a result, Pluronic F-68 (PF-68), a nonionic surfactant, is commonly used to reduce bubble-associated cell damage in sparged bioreactors. While PF-68 is currently effective, there is a concern with respect to its decrease in effectiveness as cell concentrations increase (Ma et al., 2004, Biotechnol Prog 20:1183-1191). In addition, having more than one effective surfactant for cell culture is also highly desirable. Given the empirical nature in which PF-68 was initially discovered as a cell culture additive, a structure-performance study of small molecule surfactants, a distinct group which have been previously investigated for other purposes, was performed in an attempt to find a replacement for PF-68. In this study, a generic platform was established to initially screen both the type and concentration of these surfactants for cytotoxicity. Promising candidates where then evaluated for their ability to rapidly lower the surface tension (dynamic surface tension) of culture media and their ability to prevent cell-bubble attachment in a specially developed bubble creation and collection system. Several promising small- molecule surfactants, and their effective concentration, were identified, which can reduce cell-bubble attachment efficiently without being harmful to cells.  相似文献   

6.
Foam formation and the subsequent cell damage/losses in the foam layer were found to be the major problems affecting cell growth and monoclonal antibody (MAb) production in stirred and sparged bioreactors for both serum-supplemented and serum-free media. Surfactants in the culture media had a profound effect on cell growth by changing both the properties of bubbles and the qualities of foam formed. Comparable cell growth and MAb production in sparged bioreactors and in stirred and surface-aerated control cultures were observed only in Pluronic F-68 containing culture media. In media devoid of Pluronic F-68, cells became more sensitive to direct bubble aeration in the presence of antifoam agent which was used to suppress foam formation. Compared with serum-supplemented medium, more severe cell damage effects were observed in serum-free medium. In addition, serum-free medium devoid of cells was partially degraded under continuous air sparging. The mechanism of this damage effect was not clear. Pluronic F-68 provided protective effect to cells but not to the medium. A theoretical model based on the surface active properties of Pluronic F-68 was proposed to account for its protective effect on cell growth. Optimum media surfactant composition in terms of maximum cell growth and minimum foam formation was proposed for stirred and sparged animal cell bioreactor.  相似文献   

7.
A perfusion culture system was developed to investigate the oxygenation of high-density hybridoma cell cultures. The culture system was composed of a stirred-tank bioreactor and an external microfiltration hollow fiber cartridge for medium perfusion. Cell growth and antibody production were examined with large bubble ( approximately 5 mm in diameter), micron-sized bubble ( approximately 80 mum in diameter), and silicone tubing oxygenation techniques. Comparable cell growth and monoclonal antibody (MAb) production were found for both the micron-sized and large oxygenation methods, provided that large bubbles were enriched with pure oxygen. Relatively low cell growth and MAb production were attained with the bubble-free silicone tubing oxygenation. It is concluded that direct bubble oxygenation can be applied successfully in high-density animal cell cultures, provided that the culture medium is supplemented with Pluronic F-68. The accumulation of ammonia in the culture medium rather than oxygen limitation was found to be one of the possible problems that eventually inhibited cell growth. This and the fouling of the filtration cartridge during long-term cultivation were found to be more problematic than simple bubble oxygenation of high-density cell culture. The micron-sized bubble oxygenation method is highly recommended for high-density animal cell cultures, provided that Pluronic F-68 is supplemented into the culture medium. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
A significant degree of cell damage is observed during suspension cell culture with air sparging. Protective agents can be added to the culture medium to protect the cells from damage. It has been observed that cells tend to adhere to air-medium interfaces and cell damage is mainly due to this cell-bubble interaction; protective additives have been found to prevent this cell adhesion to the bubble surfaces. In this article, it is demonstrated that the interfacial tension between the air and medium is related to the effectiveness of the protective additives to prevent adhesion of cells to this interface. Five different types of additives (Pluronic F-68, Methocels, dextran, Polyvinyl alcohol, and polyethylene glycols) were studied in an effort to determine their protective characteristics. Liquid-vapor interfacial tensions of the culture medium, with and without the additives, were measured by two different techniques (maximum bubble pressure method and Wilhelmy plate method). In addition, visualization techniques showed that in the presence of certain protective additives cells do not adhere to the bubble surface. Results obtained from these experiments indicate that the additives which rapidly lower the liquid-vapor interfacial tension of the culture medium also prevent adhesion of cells to the bubble surface. Experiments have also been conducted to determine the number of cells killed due to bubble rupture, and it was observed that this number is related to the amount of cells adhering to the bubble surface. (c) 1995 John Wiley & Sons, Inc.This article is a US Government Work and, as such, is in the public domain in the United States of America.  相似文献   

9.
Recent developments in high cell density and high productivity fed-batch animal cell cultures have placed a high demand on oxygenation and carbon dioxide removal in bioreactors. The high oxygen demand is often met by increasing agitation and sparging rates of air/O2 in the bioreactors. However, as we demonstrate in this study, an increase of gas sparging can result in cell damage at the sparger site due to high gas entrance velocities. Previous studies have showed that gas bubble breakup at the culture surface was primarily responsible for cell damage in sparged bioreactors. Such cell damage can be reduced by use of surfactants such as Pluronic F-68 in the culture. In our results, where NS0 cells were grown in a protein-free and cholesterol-free medium containing 0.5 g/L Pluronic F-68, high gas entrance velocity at the sparger site was observed as the second mechanism for cell damage. Experiments were performed in scaled-down spinners to model the effect of hydrodynamic force resulting from high gas velocities on antibody-producing NS0 cells. Cell growth and cell death were described by first-order kinetics. Cell death rate constant increased significantly from 0.04 to 0.18 day(-1) with increasing gas entrance velocity from 2.3 to 82.9 m/s at the sparger site. The critical gas entrance velocity for the NS0 cell line studied was found to be approximately 30 m/s; velocities greater than 30 m/s caused cell damage which resulted in reduced viability and consequently reduced antibody production. Observations from a second cholesterol-independent NS0 cell line confirmed the occurrence of cell damage due to high gas velocities. Increasing the concentration of Pluronic F-68 from 0.5 to 2 g/L had no additional protective effect on cell damage associated with high gas velocity at the sparger. The results of gas velocity analysis for cell damage have been applied in two case studies of large-scale antibody manufacturing. The first is a troubleshooting study for antibody production carried out in a 600 L bioreactor, and the second is the development of a gas sparger design for a large bioreactor scale (e.g., 10,000 L) for antibody manufacturing.  相似文献   

10.
There are three main potential sources for cell shear damage existing in stirred tank bioreactors. One is the potential high energy dissipation in the immediate impeller zones; another from small gas bubble burst; and third is from high gas entrance velocity (GEV) emitting from the sparger. While the first two have been thoroughly addressed for the scale-up of Chinese hamster ovary (CHO) cell culture knowing that a wide tolerable agitation range with non-damaging energy dissipation exists and the use of shear protectants like Pluronic F68 guard against cell damage caused by bubble burst, GEV remains a potential scale-up problem across scales for the drilled hole or open pipe sparger designs. GEV as high as 170 m/s due to high gas flow rates and relatively small sparger hole diameters was observed to be significantly detrimental to cell culture performance in a 12,000 L bioreactor when compared to a satellite 2 L bioreactor run with GEV of <1 m/s. Small scale study of GEV as high as 265 m/s confirmed this. Based on the results of this study, a critical GEV of >60 m/s for CHO cells is proposed, whereas previously 30 m/s has been reported for NS0 cells by Zhu, Cuenca, Zhou, and Varma (2008. Biotechnol. Bioeng., 101, 751–760). Implementation of new large scale spargers with larger diameter and more holes lowered GEV and helped improve the cell culture performance, closing the scale-up gap. Design of such new spargers was even more critical when hole plugging was discovered during large scale cultivation hence exacerbating the GEV impact. Furthermore, development of a scale down model based on mimicry of the large scale GEV profile as a function of time was proven to be beneficial for reproducing large scale results.  相似文献   

11.
We describe a method by which the degree of bubble saturation can be determined by measuring the velocity of single bubbles at different heights from the bubble source in pure water containing increasing concentrations of surfactants. The highest rising velocities were measured in pure water. Addition of surfactants caused a concentration-dependent and height-dependent decrease in bubble velocity; thus, bubbles are covered with surfactants as they rise, and the distance traveled until saturation is reached decreases with increased concentration of surfactant. Pluronic F68 is a potent effector of bubble saturation, 500 times more active than serum. At Pluronic F68 concentrations of 0.1% (w/v), bubbles are saturated essentially at their source. The effect of bubble saturation on the interactions between animal cells and gas bubbles was investigated by using light microscopy and a micromanipulator. In the absence of surfactants, bubbles had a killing effect on cells; hybridoma cells and Chinese hamster ovary (CHO) cells were ruptured when coming into contact with a bubble. Bubbles only partially covered by surfactants adsorbed the cells. The adsorbed cells were not damaged and they also could survive subsequent detachment. Saturated bubbles, on the other hand, did not show any interactions with cells. It is concluded that the protective effect of serum and Pluronic F68 in sparged cultivation systems is based on covering the medium-bubble interface with surfaceactive components and that cell death occurs either after contact of cells with an uncovered bubble or by adsorption of cells through partially saturated bubbles and subsequent transport of cells into the foam region. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

13.
Pluronic F-68 has been widely used to protect animal cells from hydrodynamic stress, but its mechanism of action is still debatable. Published evidence indicates that Pluronic F-68 interacts with cells, yet scarce information exists of its effect on recombinant protein and virus production by insect cells. In this work, the effect of Pluronic F-68 on production of recombinant baculovirus and rotavirus protein VP7 was determined. Evidence of Pluronic F-68 direct interaction with Sf-9 insect cells also was obtained. Maximum recombinant VP7 concentration and yield increased 10x, whereas virus production decreased by 20x, in spinner flask cultures with 0.05% (w/v) Pluronic F-68 compared to controls lacking the additive. No differences were observed in media rheology, nor kinetics of growth and infection (as inferred from cell size) between both cultures. Hence, Pluronic F-68 influenced cell physiology independently of its shear protective effect. Cells subjected to a laminar shear rate of 3000 s(-1) for 15 min, without gas/liquid interfaces, were protected by Pluronic F-68 even after its removal from culture medium. Furthermore, the protective action was immediate in vortexed cells. The results shown here indicate that Pluronic F-68 physically interacts with cells in a direct, strong, and stable mode, not only protecting them from hydrodynamic damage, but also modifying their capacity for recombinant protein and virus production.  相似文献   

14.
Chalmers JJ 《Cytotechnology》1996,20(1-3):163-171
Conclusions While insect cells can be easily damaged in bioreactors as a result of hydrodynamic forces, it is also relatively easy to prevent this damage. Of several possible damage mechanisms, the best understood and preventable is the attachment of cells to gas-liquid interfaces and the subjection of these attached cells to the hydro-dynamic forces and/or physical forces associated with these interfaces. For example, cells attached to gas bubbles in a bioreactor can be transported into the foam layer where they are physically removed from the cell suspension, or they can be killed when the gas bubble they are attached to ruptures at the medium-air interface at the top of the bioreactor. The easiest method to prevent this damage is through the use of specific surface active compounds, such as Pluronic F-68 or Methocel E-50 which prevent the cells from attaching to the gas-medium interface.  相似文献   

15.
A new bubble aeration system was designed to minimize cell killing and cellular damage due to sparging. The residence time of the bubbles in the developed bubble bed reactor was prolonged dramatically by floating them in a countercurrent produced by an impeller. The performance of the new reactor bubble aeration system, implemented in a laboratory reactor, was tested in dynamic aeration experiments with an without cells. An efficiency up to 95% in oxygen transfer could be achieved, which enables a much lower gas flow rate compared with conventional bubble aeration reactors. The low gas flow rate is important to keep cell damage by bubbles as low as possible. A laser light sheet technique used to find the optimal flow pattern in the reactor. The specific power dissipation of the impeller is a good measure to predict cell damage in a turbulent flow. Typical values for the power dissipation measured in the bubble bed reactor were in the range of 0.002 to 0.013 W/kg, which is far below the critical limit for animal cells. The growth of a hybridoma cell line was studied in cell cultivation experiments. A protein-free medium without supplements such as serum or Pluronic F68 was used to exclude any effect of cell-protecting factors, No difference in the specific growth rate and the yield of the antibodies was observed in cell grown in the bubble free surface aeration in the spinner flask. In contrast to the spinner flask, however, the bubble bed reactor design could be scaled up. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Oxygen transfer rates were determined in a bubble aerated animal cell bioreactor. It was found that the oxygen transfer rates increased in the following order: large bubbles ( approximately 5 mm diameter) < intermediate bubbles ( approximately 1 mm diameter) < micron-sized bubbles ( approximately 100 mum diameter). Under certain conditions, the micron-sized bubbles were capable of achieving oxygen transfer rate up to 100 h(-1), a 10-20-fold higher transfer rate than the large bubbles. The effects of medium composition on oxygen transfer rates were different for the three ranges of bubbles studied. For the large bubbles, oxygen transfer rates decreased with increasing medium complexity. The lowest oxygen transfer rate was found in new-born calf serum (NBCS) and/or Pluronic F-68 supplemented media. For the intermediate and micron-sized bubbles, supplementation with NBCS into the culture media resulted in decreased oxygen transfer rate. However, further supplementation with Pluronic F-68 enhanced oxygen transfer rate greatly for both types of bubbles. The highest oxygen transfer rate was found for micron-sized bubbles in Pluronic F-68 supplemented media containing antifoam agent and NBCS.  相似文献   

17.
Recalcitrance to tissue culture is observed in some genotypes of Brassica napus. Several studies have confirmed that Pluronic F-68 has growth-promoting effects on numerous tissue types. This work investigated the effect of the non-ionic surfactant Pluronic F-68 at four concentrations (0.1%, 0.25%, 0.5%, and 1% (w/v)) on the responsiveness of recalcitrant B. napus lines to tissue culture. Microspores from seven populations of B. napus were cultured on Nitsch and Nitsch medium with this compound. The embryos obtained were plated on solid B5 medium supplemented with zeatin for shoot induction. Pluronic F-68 had a highly significant effect on the proportion of shoot regeneration (P < 0.05) in some of the recalcitrant populations. However, no strong dose–response effect was observed. The estimated probability of a shoot occurring in the absence of Pluronic F-68 ranged from 0.04 to 0.31 depending on the genotype, while in the presence of Pluronic F-68, it ranged from 0.07 to 0.53, respectively.  相似文献   

18.
Summary The effects of a non-ionic surfactant, Pluronic F-68, on growth of chick embryonic fibroblasts and hamster melanoma cellsin vitro have been studied. Low concentrations (0.05–0.1% w/v) of commercial grade Pluronic stimulated growth of both cell types whereas low concentrations of purified Pluronic inhibited fibroblast growth but strongly stimulated growth of melanoma cells. These observations suggest that Pluronic may have value for regulating growth of cell cultures.  相似文献   

19.
利用鼠鼠杂交增2F7细胞(分泌IgG2a单抗)研究了Pluronic F-68、甲基纤维素、羧甲基纤维素及聚醚多元醇与杂交瘤细胞生物相容性及添加限制浓度;研究了添加浓度对葡萄糖的利用及氨的生成影响}在高速搅拌、高剪切力下考查添加剂的保护效果。结果表明,O·05—0·10%(w/V)Pluronic F-68、O.10—0.20%(w/V)甲基纤维素能较好地保护杂交瘤细胞;高浓度Pluronic F-68增加了葡萄糖的比消耗速率及氨的比生成速率;高浓度甲基纤维素增加了氨比生成速率;羧甲基纤维素添加浓度低于0.1%不影响细胞生长,也无保护作用,羧甲基纤维素不影响细胞对葡萄糖的比消耗速率,但增加了氨比生成速率,聚醚多元醇分解细胞。在1.5升GemlliGen生物反应器中,培养基添加0.10%Pluronic F-68、搅拌转速70r/min下细胞正常生长。  相似文献   

20.
ABSTRACT We have previously shown that the cell death of Tetrahymena thermophila in low inocula cultures in a chemically-defined medium is not apoptotic. The death is caused by a cell lysis occurring at the medium-air interface and can be prevented by the addition of insulin or Pluronic F-68. Here, we report that cell death can also be caused by the medium. The specific effects of several medium constituents were tested in the presence and absence of an interface. Four of the 19 amino acids (arginine, aspartic acid, glutamic acid, and histidine in millimolar concentration) as well as Ca2+ (68 μM) and Mg2+ (2 mM) and trace metal ions (micromolar concentrations) are all sufficient to induce the interface-mediated death. The effect of the amino acids and the salt ions Ca2+ and Mg2+ can be abolished by the addition of insulin (10-6 M) or Pluronic F-68 (0.01% w/v), whereas insulin/Pluronic F-68 only postpones the death induced by trace metal ions. On the basis of our findings, a new recipe for a chemically-defined medium has been formulated. Single cells can grow in this medium in the presence of medium-air interface without any supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号