首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt was made to develop a selective isolation medium for Clostridium sporogenes and related organisms based on the ability of these organisms to obtain their energy for growth by means of coupled oxidation-reduction reactions between appropriate pairs of amino acids (Stickland reaction). Using a semi-defined basal medium containing various combinations of amino acids, it was found that Cl. sporogenes utilized a wider range of amino acid pairs than strains of five other species of clostridia known to carry out a Stickland-type fermentation.
With alanine and proline as the principal energy sources and the medium solidified with agar. it was shown that reference strains of Cl. sporogenes and proteolytic Cl. botulinum types A, B and F could be recovered almost quantitatively, with or without prior heating at 80 °C for 10 min. By contrast, growth of test strains of Streptococcus faecalis, Strep. faecium , 'saccharolytic' Cl. botulinum types B, C, D, E and F and 'proteolytic' strains of types C and D was suppressed on this medium, as were strains of 26 other species of clostridia.
Addition of 50 μg/ml of polymyxin to the agar medium had no detectable effect on the recovery of Cl. sporogenes or Cl. botulinum. When samples of soil and mud were plated on the antibiotic-containing medium, 63.1% of 225 isolates thus obtained were identified as Cl. sporogenes/botulinum.  相似文献   

2.
Forty strains of proteolytic and saccharolytic clostridia isolated from Grana cheese were re-identified by DNA-DNA homology. Thirty culture collection strains were also examined for comparison. Organisms of the species Clostridium tyrobutyricum which present variability in phenotypic characteristics were found to constitute a homogeneous group, genetically unrelated to all the reference or competitor strains used. The proteolytic clostridia from cheese show a high level of homology with the reference strains C.sporogenes ATCC 319 and C. sporogenes ATCC 3584 and negligible homology with C. bifermentans ATCC 19299. Three strains with phenotypic characters very similar to those of the species C. butyricum present a level of DNA homology with C. butyricum ATCC 19398 ranging from 61–71%. In the light of the results obtained some taxonomic conclusions have been drawn.  相似文献   

3.
On nitroaryl reductase activities in several Clostridia   总被引:5,自引:0,他引:5  
Crude extracts of Clostridium kluyveri, Clostridium spec. La 1, Clostridium sporogenes and Clostridium pasteurianum catalyse the NADH-dependent reduction of the nitro group of p-nitrobenzoate. The former three Clostridia also use pyruvate as electron donor for this reduction. The NADH-dependent reductases have been partially purified and characterized from Clostridium kluyveri. Nitroalkyl compounds as well as nitrite, sulfite, sulfate and hydroxylamine are no substrates. Based on chromatographic behavior, separation pattern, yields, stability, pH optima, molecular masses and EPR studies the three NADH-dependent nitroaryl group reducing enzymes in Clostridium kluyveri (three activities in Clostridium spec. La 1 and two activities in Clostridium sporogenes) are different from alcohol dehydrogenase, aldehyde dehydrogenase, 3-hydroxy-butyryl-CoA dehydrogenase, butyryrl-CoA dehydrogenase, 2-enoate reductase, ferredoxin-NAD and ferredoxin-NADP reductase. The physiological roles of the nitroaryl reductases are not known. The reductase activities show losses of 80-90% during classical protein purification procedures. One of the three nitroaryl reductases exhibits a pH optimum of 10.5. The crude extract reveals a pH optimum at 11.5. The first step of the reduction reaction leads to the nitroradical anion (1 electron transfer). The electron transfer to p-nitrobenzoate is also catalysed by ferrodoxin-NAD reductase from NADH and by ferredoxin-NADP reductase from NADP. Partially purified 2-oxo-acid synthases from Clostridium sporogenes catalyse with low rates the reduction of p-nitrobenzoate as well as 2-nitroethanol in the presence and absence of ferredoxin using pyruvate or 2-oxo-4-methylpentanoate as electron donors, respectively. The NADH-dependent reduction of p-nitro-benzoate accounts for at least 70% and the 2-oxo acid-dependent reduction for about 5% of the total nitroaryl reductase activity in the Clostridia. It seems that the pyridine nucleotide-dependent nitroaryl reductases are enzymes so far unknown in Clostridia.  相似文献   

4.
Enoate reductase or clostridia containing this enzyme (Clostridium tyrobutyricum or C. kluyveri) catalyse the reduction of alpha,beta-unsaturated aldehydes (enals). The enantiomeric purity of the saturated aldehydes obtained from alpha-substituted enals is usually rather low and depends heavily on the reaction conditions. The reduction of the corresponding allyl alcohols to the saturated alcohols leads to much higher enantiomeric purities, though the reduction of the enal corresponding to the allyl alcohol to the saturated aldehyde is an intermediary step in the reaction sequence allyl alcohol----saturated alcohol. The explanation seems to be the racemisation of saturated aldehydes caused by enoate reductase. This is illustrated by the reduction of (E)-2-methylcinnamyl aldehyde to (R)-2-methyl-3-phenylpropanal or (R)-2-methyl-3-phenylpropanol under different conditions and measuring the racemisation of the aldehyde as well as the hydrogen-deuterium exchange of 3-phenylpropanal. In contrast to saturated carboxylates saturated aldehydes can be dehydrogenated to alpha,beta-unsaturated aldehydes (enals) by enoate reductase in the presence of electron acceptors such as oxygen or dichlorophenol indophenol. Under these conditions enoate reductase shows in the presence of oxygen a surprisingly high half life (greater than 20 h) as compared to that which is observed when the enzyme was used as a reductase with NADH in the presence of oxygen. In this case the enzyme is inactivated within a few minutes.  相似文献   

5.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

6.
Summary The rate of the bio-electrochemical conversion of crotonic acid into butyric acid by enoate reductase is dependent on the type of viologen used. This illustrates that the reaction between enzyme and mediator, rather than the reaction between enzyme and crotonic acid, is rate limiting. Thus for bio-electrochemical conversion of enoates into saturated chiral acids immobilization of enoate reductase is beneficial from a kinetic point of view. The highest rate constant (k'=7.0×106 M−1.s−1) was measured using mono-N-(aminopropyl) viologen.  相似文献   

7.
Three electron-transferring flavoproteins were purified to homogeneity from anaerobic, amino acid-utilizing bacteria (bacterium W6, Clostridium sporogenes, and Clostridium sticklandii), characterized, and compared with the dihydrolipoamide dehydrogenase of Eubacterium acidaminophilum. All the proteins were found to be dimers consisting of two identical subunits with a subunit Mr of about 35,000 and to contain about 1 mol of flavin adenine dinucleotide per subunit. Spectra of the oxidized proteins exhibited characteristic absorption of flavoproteins, and the reduced proteins showed an A580 indicating a neutral semiquinone. Many artificial electron acceptors, including methyl viologen, could be used with NADPH as the electron donor but not with NADH. Unlike the enzyme of E. acidaminophilum, which exhibited by itself a dihydrolipoamide dehydrogenase activity (W. Freudenberg, D. Dietrichs, H. Lebertz, and J. R. Andreesen, J. Bacteriol. 171:1346-1354, 1989), the electron-transferring flavoprotein purified from bacterium W6 reacted with lipoamide only under certain assay conditions, whereas the proteins of C. sporogenes and C. sticklandii exhibited no dihydrolipoamide dehydrogenase activity. The three homogeneous electron-transferring flavoproteins were very similar in their structural and biochemical properties to the dihydrolipoamide dehydrogenase of E. acidaminophilum and exhibited cross-reaction with antibodies raised against the latter enzyme. N-terminal sequence analysis demonstrated a high degree of homology between the dihydrolipoamide dehydrogenase of E. acidaminophilum and the electron-transferring flavoprotein of C. sporogenes to the thioredoxin reductase of Escherichia coli. Unlike these proteins, the dihydrolipoamide dehydrogenases purified from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and C. sporogenes exhibited a high homology to dihydrolipoamide dehydrogenases known from other organisms.  相似文献   

8.
Tischer W  Tiemeyer W  Simon H 《Biochimie》1980,62(5-6):331-339
Stereospecific hydrogenations according to the general scheme [formula: see text] are of interest from a preparative and mechanistic point of view. Proteus mirabilis is suitable for the hydrogenation of a-keto-acids to R-hydroxy-acids, and a Clostridium strain for the reduction of enoates. Both have been immobilized in formaldehyde crosslinked gelatin and the latter also in polyacrylamide. Immobilized as well as free cells showed usually half lives of 100-200 h. The immobilized cells could be separated from the products and reused. In order to hydrogenate enoates stereospecifically, formate dehydrogenase and enoate reductase have been separately immobilized and coimmobilized on controlled pore glass. The yields for the separately immobilized enzymes were about 30 per cent and 70-80 per cent, respectively. The measured rate of the coupled system with immobilized enzymes was compared with the calculated rate, taking into account effects of pore diffusion for the pyridine nucleotide. Under operational conditions the half-life of the immobilized formate dehydrogenase was 36 h versus 45 h for the free enzyme. The corresponding values for the enoate reductase turned out to be about 17 h versus about 15 h. So far the immobilized as well as the free enzymes seem to be less stable than immobilized or free cells.  相似文献   

9.
The cell wall peptodoglycans were isolated from Clostridium botulinum and some other species of the genus Clostridium by hot formamide extraction and their quantitative chemical composition and antigenic properties were determined. The petidoglycan of C. botulinum type E was found to be a diaminopimelic acid (DAP)-containing type composed of glucosamine, muramic acid, glutamic acid, alanine and DAP in the molar ratio of 0.76:0.78:1.00:1.88:0.81. All other types of C. botulinum and Clostridium sporogenes also belonged to the same peptidoglycan type. The peptidoglycans of Clostridium bifermentans and Clostridium histoloyticum contained DAP but they differed from those of C. botulinum in the molar ratio of alanine to glutamic acid. The peptidoglycan of Clostridium perfringens was composed of glutamic acid, alanine, DAP and glycine in the molar ratio of 1.00:1.64:0.94:0.90. On the other hand, the peptidoglycan of Clostridium septicum was found to contain lysine instead of DAP and the molar ratio was 1.00:1.41:0.96 for glutamic acid, alanine and lysine. In spite of the difference in amino acid composition of peptidoglycans among the clostridia, the quantitative precipitin test demonstrated that antiserum against C. botulinum type E peptidoglycan cross-reacted with the peptidoglycans from other clostridia as well as various types of C. botulinum.  相似文献   

10.
Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation.  相似文献   

11.
Lincomycin-resistant Clostridium sporogenes obtained from the stools of a patient with lincomycin-associated pseudomembranous colitis produced a heat-stable cytotoxin in low titre when grown in chopped meat medium. Vancomycin eradicated this strain and all other clostridia, and controlled the symptoms. When diarrhea recurred 7 days after treatment with vancomycin was stopped, clostridia including C. sporogenes and C. difficile were again isolated. The C. difficile produced a heat-labile cytotoxin in high titre that was unaffected by growth in various media and induced colitis in hamsters. Treatment with vancomycin, to which all the clostridia were sensitive, eradicated both toxic species and controlled the diarrhea. Antibiotic-induced pseudomembranous colitis may be associated with more than one species of toxin-producing clostridia. Vancomycin therapy should be continued for 10 days or more in patients with severe disease to eradicate the responsible organism.  相似文献   

12.
Clostridium sporogenes PA 3679 is widely used as a nontoxigenic surrogate for proteolytic strains of Clostridium botulinum in the derivation and validation of thermal processes in food. Here we report the draft assembly and annotation of the C. sporogenes PA 3679 genome. Preliminary analysis demonstrates a high degree of relatedness between C. sporogenes PA 3679 and sequenced strains of proteolytic C. botulinum.  相似文献   

13.
Summary Reports on malodour in buildings constructed in the late 1970s gave rise to thorough investigations on the possible role of vapours of chemical compounds emitted by building materials. The odour could be related to the use of casein as an additive to improve the fluidity of concrete materials used as a self-levelling floor topping compound. Casein was suggested to be degraded by microorganisms, resulting in an accumulation of malodorous substances in the topping compounds.Bacteria isolated from biodeteriorated concrete materials containing caseins exhibited unusual tolerance towards high pH. Two dominant species were found among a total of 80 sporeforming, anaerobic isolates from concrete and raw products of caseins, namely Clostridium bifermentans and Clostridium sporogenes. C. bifermentans had a maximal pH tolerance of 12.2 while C. sporogenes could reproduce up to pH 11.7. The study includes the identification of the clostridia with API multitest as well as an investigation of the volatile organic acid and monoamine patterns. About 100 cfu clostridia/g material could be obtained during the isolation procedures.  相似文献   

14.
Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.  相似文献   

15.
Growing and nongrowing cells of Clostridium sporogenes fermented betaine with l-alanine, l-valine, l-leucine, and l-isoleucine as electron donors in a coupled oxidation-reduction reaction (Stickland reaction). For the substrate combinations betaine and l-alanine and betaine and l-valine balance studies were performed; the results were in agreement with the following fermentation equation: 1 R- CH(NH(2))-COOH + 2 betaine + 2 H(2)O --> 1 R-COOH + 1 CO(2) + 1 NH(3) + 2 trimethylamine + 2 acetate. Growth and production of trimethylamine were strictly dependent on the presence of selenite in the medium. With cell suspensions it was shown that C. sporogenes was unable to catabolize betaine as a single substrate. Betaine, however, was reduced to trimethylamine and acetate under an atmosphere of molecular hydrogen. For the reduction of betaine by cell extracts of C. sporogenes, dimercaptans such as 1,4-dithiothreitol could serve as electron donors. No betaine reductase activity was detected in cells grown in a complex medium without betaine. The pH optimum of betaine reductase was at pH 7.3. When C. sporogenes was cocultured with Methanosarcina barkeri strain Fusaro on betaine together with l-alanine, an almost complete conversion of the two substrates to CH(4), NH(3), and presumably CO(2) was observed.  相似文献   

16.
Judged by properties observed during the purification and based on the sequence of the first 25 amino acids, the enzyme from Clostridium formicoaceticum catalysing the reversible reduction of non-activated carboxylic acids to aldehydes at the expense of reduced viologens, is astonishingly different from that found by us in C. thermoaceticum. According to native and SDS gel electrophoresis the reductase is nearly homogeneous after only 26-fold purification. The specificity for various substrates and artificial electron carriers is also broad, but V of the purified aldehyde dehydrogenase activity (54 U/mg enzyme for butanal) is about 1 order of magnitude lower than that of the enzyme from C. thermoaceticum. The reductase is a dimer of two identical subunits with an Mr of 67,000 each. Increased enzyme concentrations seem to lead to higher oligomers. Per dimer 11 +/- 1 iron, 16 +/- 1 acid labile sulphur, 1.4 tungsten and after permanganate oxidation 1.6 mol pterin-6-carboxylic acid have been found.  相似文献   

17.
The amounts of the volatile acids produced from thereonine, valine, leucine and isoleucine by growing cultures of clostridia have been measured. The species used were Clostridium sporogenes; C. caloritolerans; C. botulinum proteolytic type A; C. botulinum proteolytic type B; C. botulinum proteolytic type F; C. botulinum proteolytic type G; C. putrificum; C. difficile; C. ghoni; C. bifermentans; C. sordellii; C. mangenoti; C. cadaveris; C. lituseburense; C. propionicum; C. sticklandii; C. scatologenes; C. subterminale; C. putrefaciens; C. histolyticum; C. tetanomorphum; C. limosum; C. lentoputrescens; C. tetani; C. melanomenatum; C. cochlearium; C. sporospheroides. Most of the species tested gave increased yields of propionic acid when grown in the threonine medium; in addition, some species resembled C. propionicum and produced n-butyric acid when grown in this medium. C. histolyticum produced only acetic acid in the basal medium; all seven strains of this species produced more acetic acid when grown in the threonine medium than in the basal medium. Species which oxidize valine to iso-butyric acid also oxidize leucine to 3-methyl butyric acid and isoleucine to 2-methylbutyric acid. The iso-caproic fraction produced by some species is shown to be derived from leucine. The identitity of the branched-chain acids produced by C. sporogenes has been confirmed by gas liquid chromatography/mass spectrometry.Abbreviations GLC gas liquid chromatography - RCM reinforced clostridial medium - VFA volatile fatty acid  相似文献   

18.
The initial step in the fermentation of leucine to acetate, isobutyrate, and ammonia by Clostridium sporogenes is the B12 coenzyme-dependent conversion of alpha-leucine to beta-leucine (3-amino-4-methylpentanoate). The amino group migration reaction, catalyzed by leucine 2,3-aminomutase, is reversible and is inhibited by intrinsic factor. The enzyme activity has been found in several clostridia, in rat, sheep, rhesus, and African green monkey livers, and in human leukocytes.  相似文献   

19.
Three commercially available test systems for the identification of anaerobic bacteria were evaluated for the identification of 18 proteolytic group I and 69 non-proteolytic group II Clostridium botulinum, four Clostridium sporogenes and 18 non-toxigenic group II C. botulinum-like strains. All proteolytic C. botulinum strains were misidentified by the Rapid ID 32 A and RapID ANA II, while 14 strains and all C. sporogenes strains were identified as C. botulinum or C. sporogenes by the API 20 A. Reversely, all non-proteolytic C. botulinum strains were misidentified by the API 20 A while the Rapid ID 32 A recognized 67 and RapID ANA II 68 strains. All C. sporogenes strains were recognized by the RapID ANA II, while the Rapid ID 32 A recognized one strain. All non-proteolytic non-toxigenic strains were identified as C. botulinum group II by the Rapid ID 32 A, 17 strains by the RapID ANA II, and one strain by the API 20 A. The results show that these test systems do not provide a reliable method for identification of C. botulinum.  相似文献   

20.
The polyamide layer technique for the chromatographic separation of dimethylaminonaphthalene sulphonyl amino acids has been adapted to the qualitative analysis of amino acids in media before and after the growth of micro-organisms. The method has been used to study the amino acids metabolized by cultures of proteolytic clostridia growing in a medium consisting of an acid hydrolysate of casein as a source of amino acids and small amounts of yeast extract and trypticase as sources of growth factors. The chromatograms of the media after growth showed which amino acids were used and which new amino acids were produced. Clostridium botulinum type F (proteolytic), C. ghoni, C. mangenoti and C. putrificum were found to reduce proline to 5-aminovaleric acid and to produce 2-aminobutyric acid, properties they shared with C. sporogenes and C. sticklandii. C. botulinum type G and C. subterminale used glycine, lysine, serine, and arginine but in contrast to C. sticklandii they neither reduced proline to 5-aminovaleric acid nor produced 2-aminobutyric acid. Both organisms oxidized phenylalanine, tyrosine and tryptophan to phenylacetic acid, p-hydroxyphenyl acetic acid and indole acetic acid respectively. C. lituseburense and C. scatologenes used serine, threonine and arginine and produced 2-amino butyric acid and ornithine. C. lentoputrescens, C. limosum and C. malenomenatum resembled C. tetanomorphum by using glutamic acid and tyrosine. The chromatograms always showed the physiological group to which an organism belonged and in some cases were characteristic of the species.Abbreviations Abu 2-aminobutyric acid - Ava 5-aminovaleric acid - DNS 1-dimethyaminonaphthalene-5-sulphonyl - DNS-Cl the sulphonyl chloride - DNS-NH2 the sulphonamide - DNS-OH the sulphonic acid - VFA steam volatile fatty acid - u unknown  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号