首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fos proteins have been implicated in control of tumorigenesis-related genetic programs including invasion, angiogenesis, cell proliferation and apoptosis. In this study, we demonstrate that c-Fos is able to induce mesenchymal transition in murine tumorigenic epithelial cell lines. Expression of c-Fos in MT1TC1 cells led to prominent alterations in cell morphology, increased expression of mesenchymal markers, vimentin and S100A4, DNA methylation-dependent down-regulation of E-cadherin and abrogation of cell-cell adhesion. In addition, c-Fos induced a strong beta-catenin-independent proliferative response in MT1TC1 cells and stimulated cell motility, invasion and adhesion to different extracellular matrix proteins. To explore whether loss of E-cadherin plays a role in c-Fos-mediated mesenchymal transition, we expressed wild-type E-cadherin and two different E-cadherin mutants in MT1TC1/c-fos cells. Expression of wild-type E-cadherin restored epithelioid morphology and enhanced cellular levels of catenins. However, exogenous E-cadherin did not influence expression of c-Fos-dependent genes, only partly suppressed growth of MT1TC1/c-fos cells and produced no effect on c-Fos-stimulated cell motility and invasion in matrigel. On the other hand, re-expression of E-cadherin specifically negated c-Fos-induced adhesion to collagen type I, but not to laminin or fibronectin. Of interest, mutant E-cadherin which lacks the ability to form functional adhesive complexes had an opposite, potentiating effect on cell adhesion to collagen I. These data suggest that cell adhesion to collagen I is regulated by the functional state of E-cadherin. Overall, our data demonstrate that, with the exception of adhesion to collagen I, c-Fos is dominant over E-cadherin in relation to the aspects of mesenchymal transition assayed in this study.  相似文献   

2.
Discoidin domain receptor 1 (DDR1) promotes E-cadherin-mediated adhesion. The underlying mechanism and its significance, however, have not been elucidated. Here we show that DDR1 overexpression augmented, whereas dominant negative mutant (DN-DDR1) or knockdown of DDR1 inhibited E-cadherin localized in cell-cell junctions in epithelial cells. DDR1 changed the localization and abundance of E-cadherin, as well as epithelial plasticity, as manifested by enhancement of microvilli formation and alteration of cytoskeletal organization. DDR1 also reduced protein abundance of mesenchymal markers, whereas DN-DDR1 and sh-DDR1 showed opposite effects. These results suggest that expression of DDR1 increases epithelial plasticity. Expression of DDR1 augmented E-cadherin protein levels by decreasing its degradation rate. Photobleaching and photoconversion of E-cadherin conjugated with Eos fluorescence protein demonstrated that DDR1 increased the stability of E-cadherin on the cell membrane, whereas sh-DDR1 decreased it. Pull-down assay and expression of constitutively active or dominant-negative Cdc42 showed that DDR1 stabilized E-cadherin through inactivation of Cdc42. Altogether, our results show that DDR1 promotes cell-cell adhesion and differentiation through stabilization of E-cadherin, which is mediated by Cdc42 inactivation.  相似文献   

3.
Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin-Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to betaPIX. Rather, Scrib depletion disrupts E-cadherin-mediated cell-cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin-alpha-catenin fusion protein but not by E-cadherin-green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.  相似文献   

4.
5.
Lipocalin 2, an iron-siderophore-binding protein, converts embryonic kidney mesenchyme to epithelia. We found that lipocalin 2 could also convert 4T1-Ras-transformed mesenchymal tumor cells to an epithelial phenotype, increase E-cadherin expression, and suppress cell invasiveness in vitro and tumor growth and lung metastases in vivo. The Ras-MAPK pathway mediated the epithelial to mesenchymal transition in part by increasing E-cadherin phosphorylation and degradation. Lipocalin 2 antagonized these effects at a point upstream of Raf activation. Lipocalin 2 action was enhanced by iron-siderophore. These data characterize lipocalin 2 as an epithelial inducer in Ras malignancy and a suppressor of metastasis.  相似文献   

6.
We investigated the role of endogenous AP-1 in human tumor cell lines by introducing SupJunD-1, a dominant-negative mutant of AP-1, using vesicular stomatitis virus G protein (VSV-G)-pseudotyped retrovirus vectors. Single inoculation of six human tumor cell lines, originating from osteosarcomas, non-small cell lung carcinomas or cervical carcinomas, with recombinant SupJunD-1 virus at a high multiplicity of infection readily inhibited colony formation in soft agar. We detected no significant changes in expression levels of AP-1 components c-Jun or Fra-1, adhesion molecules CD44 or E-cadherin, or cell cycle regulator p53, which are encoded by genes previously reported to be under the control of AP-1 in some mouse or human cell lines. By varying the dosage of VSV-G-pseudotyped retrovirus, we were able to change the proviral copy number of supjunD-1 from 1 to approximately 10 and monitor suppression of endogenous AP-1 function as assessed by growth characteristics of the tumor cell lines, we found a SupJunD-1 dosage which significantly suppressed anchorage-independent growth without affecting the cellular growth in monolayer cultures at all. We conclude that endogenous AP-1 levels necessary for oncogenic activity are much higher than those sufficient to support normal growth.  相似文献   

7.
8.
9.
10.
11.
Cadherins are cell adhesion molecules involved in cell-cell adhesion, signalling, and cellular proliferation and differentiation. E-cadherin is required for the formation of epithelium in vivo. We investigated the contribution of the cytoplasmic domain of E-cadherin to adhesion, signalling, and differentiation during murine mammary gland development, by in vivo expression of a gene encoding a truncated form of E-cadherin lacking the extracellular domain. The expression of this gene in mammary epithelial cells during pregnancy induced precocious lobular epithelial morphogenesis associated with morphological differentiation and the early synthesis of various molecules (advanced milk fat globule appearance and milk protein production). After delivery, when a fully differentiated and secretory epithelium is required for lactation, the cytoplasmic domain of E-cadherin had a dominant-negative effect on cell-cell adhesion and affected the structure and function of the epithelium. This also led to the partial loss of epithelial polarisation and changes in the basement membrane, both important in malignancy. Thus, the cytoplasmic domain of E-cadherin induces epithelial morphogenesis, but also alters the cohesiveness of the fully differentiated epithelium.  相似文献   

12.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphological and migration characteristics of epithelial cells of IAR1162 and IAR1170 clones derived from a mixed culture of N-RasV12 oncogene-transformed IAR-2 cell line. It was found that the oncogenic RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, assembled E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the oncogenic RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of cell motility in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the motility of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

13.
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial-mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible "mesenchymal to epithelial transition" (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.  相似文献   

14.
EGF is known to affect adherens junctions and disrupt cell-cell adhesion in a variety of carcinomas but the underlying mechanisms are not completely understood. Using human tumor epithelial cells overexpressing EGFR we demonstrated that EGF-induced cell scattering was mediated by protein kinase C-delta (PKC-δ). PKC-δ knockdown by siRNA significantly inhibited EGF-induced internalization of E-cadherin into the cytoplasm and blocked cell scattering. EGF phosphorylated PKC-δ at Y311 and ectopic expression of the mutant Y311F prevented PKC-δ binding to E-cadherin and EGF-induced cell scattering. Moreover, depletion of Src using siRNA decreased EGF-induced phosphorylation of PKC-δ at Y311 and blocked scattering. Finally, EGF reduced expression of the tight junction protein, occludin, and this effect was also mediated by PKC-δ through Src. In summary, PKC-δ mediated the effects of EGF on adherens and tight junctions thereby playing an important role in cell-cell adhesion with possible wider implications in tumor metastasis or epithelial-to-mesenchymal transition.  相似文献   

15.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphologic and mi gration characteristics of epithelial cells of Iar1162 and IAR1170 clones derived from a mixed culture of on cogene N-RasV12-transformed cell line IAR-2. It was found that the mutant oncogene RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, formed E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the mutant oncogene RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR 1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of locomotor activity in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the locomotor activity of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

16.
The integrity of cell-cell contacts such as adherens junctions (AJ) and tight junctions (TJ) is essential for the function of epithelia. During carcinogenesis, the increased motility and invasiveness of tumor cells reflect the loss of characteristic epithelial features, including cell adhesion. While beta-catenin, a component of AJ, plays a well characterized dual role in cell adhesion and signal transduction leading to epithelial cell transformation, little is known about possible roles of tight junction components in signaling processes. Here we show that mutants of the TJ protein zonula occludens protein-1 (ZO-1), which encode the PDZ domains (ZO-1 PDZ) but no longer localize at the plasma membrane, induce a dramatic epithelial to mesenchymal transition (EMT) of Madin-Darby canine kidney I (MDCKI) cells. The observed EMT of these MDCK-PDZ cells is characterized by a repression of epithelial marker genes, a restricted differentiation potential and a significantly induced tumorigenicity. Intriguingly, the beta-catenin signaling pathway is activated in the cells expressing the ZO-1 PDZ protein. Ectopic expression of the adenomatous polyposis coli tumor suppressor gene, known to down-regulate activated beta-catenin signaling, reverts the transformed fibroblastoid phenotype of MDCK-PDZ cells. Thus, cytoplasmic localization of the ZO-1 PDZ domains induces an EMT in MDCKI cells, most likely by modulating beta-catenin signaling.  相似文献   

17.
E-cadherin is a well characterized adhesion molecule that plays a major role in epithelial cell adhesion. Based on findings that expression of E-cadherin is frequently lost in human epithelial cancers, it has been implicated as a tumor suppressor in carcinogenesis of most human epithelial cancers. However, in ovarian cancer development, our data from the current study showed that E-cadherin expression is uniquely elevated in 86.5% of benign, borderline, and malignant ovarian carcinomas irrespective of the degree of differentiation, whereas normal ovarian samples do not express E-cadherin. Thus, we hypothesize that E-cadherin may play a distinct role in the development of ovarian epithelial cancers. Using an E-cadherin-expressing ovarian cancer cell line OVCAR-3, we have demonstrated for the first time that the establishment of E-cadherin mediated cell-cell adhesions leads to the activation of Akt and MAPK. Akt activation is mediated through the activation of phosphatidylinositol 3 kinase, and both Akt and MAPK activation are mediated by an E-cadherin adhesion-induced ligand-independent activation of epidermal growth factor receptor. We have also demonstrated that suppression of E-cadherin function leads to retarded cell proliferation and reduced viability. We therefore suggest that the concurrent formation of E-cadherin adhesion and activation of downstream proliferation signals may enhance the proliferation and survival of ovarian cancer cells. Our data partly explain why E-cadherin is always expressed during ovarian tumor development and progression.  相似文献   

18.
19.
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial–mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible “mesenchymal to epithelial transition” (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.  相似文献   

20.
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an alpha- and beta-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin-mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and beta(1)-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase beta(1)-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin-mediated cell-cell adhesion requires the Na,K-ATPase beta-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the beta(1)-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号