首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The localization of cholinergic, GABAergic and aminergic structures in the 'mesolimbic' system has been discussed from studies on the topographical distribution of choline acetyltransferase, glutamate decarboxylase and aromatic amino acid decarboxylase in normal rat brain and in brains hemitransected at the level of globus pallidus. The structures analysed included nucleus accumbens, olfactory tubercle, septum, medial forebrain bundle, striatum, substantia nigra, ventral tegmental area and nucleus interpeduncularis.
Choline acetyltranferase was highly concentrated in the nucleus interpeduncularis, but it did also exhibit considerable activity in the nucleus accumbens, the olfactory tubercle and the striatum. The activities did not change after hemitransection. Aromatic amino acid decarboxylase was highly concentrated in the ventral tegmental area, but high activities were also found in the striatum, the nucleus accumbens, the olfactory tubercle and the pars compacta of the substantia nigra. The activity decreased in all areas rostral to the hemitransection. Glutamate decarboxylase was highly concentrated in the dopamine innervated regions, moreso in the limbic structures than in the striatum. Much higher activity was found in the substantia nigra than in the ventral tegmental area. After hemitransection the activity in the substantia nigra was decreased whereas in the ventral tegmental area it was unchanged. Our results thus suggest that dopaminergic cells in the ventral tegmental area do not receive GABAergic fibres from the terminal regions of the ascending dopaminergic fibres. In addition, we found a very high concentration of glutamate decarboxylase in a region traversed by the rostral medial forebrain bundle. Here the activity was mainly confined to the paniculate fraction, probably the synaptosomes. This fraction also displayed a very active high affinity uptake of y-aminobutyric acid.  相似文献   

2.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

3.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

4.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

5.
J L Venero  M Santiago  A Machado  J Cano 《Life sciences》1989,45(14):1277-1283
Changes in biogenic amine content in the substantia nigra and in both forms of monoamine oxidase in substantia nigra and striatum of the rat during postnatal development (15-180 days) have been studied. Dopamine and serotonin had the same levels at day 15, however, each monoamine showed a different developmental profile. Dopamine levels and their metabolites (except 3-methoxytyramine) decreased during postnatal development. Serotonin levels and their main metabolite, 5-hydroxyindolacetic acid, underwent an increase during all stages studied. There were no statistically significant changes in noradrenaline levels until day 180 when they increased with respect to day 15. The highest activity of the monoamine oxidase-A in substantia nigra coincided with the highest 5-hydroxyindolacetic acid:serotonin ratio. Monoamine oxidase-A in the striatum did not change contrary to that which happened in substantia nigra. The monoamine oxidase-B:monoamine oxidase-A ratio increased during development both in the substantia nigra and the striatum. The significance of these changes is discussed.  相似文献   

6.
Summary The striatum receives the majority of excitatory amino acidergic input to the basal ganglia from neocortical and allocortical sources. The subthalamic nucleus and the substantia nigra also receive excitatory amino acidergic inputs from neocortex. The subthalamic nucleus, which has prominent projections to the pallidum and nigra, is the only known intrinsic excitatory amino acidergic component of the basal ganglia. Possible excitatory amino acidergic inputs reach the basal ganglia from the intralaminar thalamic nuclei and the pedunculo-pontine nucleus. The striatum is richly endowed with all subtypes of excitatory amino acid receptors and these appear to be inhomogeneously distributed within the striatal complex. The non-striatal nuclei contain lesser levels of excitatory amino acid receptors and the relative proportion of these receptors varies between nuclei. The presence of high densities of excitatory amino acid receptors is a phylogenetically conserved feature of the striatum and its non-mammalian homologues. In Huntington's disease, there is substantial depletion of-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, and kainate receptors within the striatum. In Parkinson's disease substantia nigra, there is significant loss of N-methyl-D-aspartate and-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.  相似文献   

7.
Abstract: Turnover of dopamine, noradrenaline. serotonin, and their metabolites has been measured in striatum and substantia nigra of adult female rats that were fed control or selenium-deficient diets for 15 days. In addition, the glutathione peroxidase activity has been studied. The most striking result was the increase of dopamine turnover (63%) and 3- methoxytyramine turnover (55%) in substantia nigra between control and experimental animals. On the other hand, no changes were found in the turnover rate of dopamine and its metabolites in the striatum. Likewise, no changes were found in noradrenaline turnover in substantia nigra. In the striatum, there was a significant increase of serotonin turnover versus no change for 5-hydroxy-3-indoleacetic acid. However, in the substantia nigra, serotonin turnover did not show significant changes, whereas 5-hydroxy-3-indoleacetic acid turnover decreased. At the same time, glutathione peroxidase activity significantly decreased in both structures after selenium-deficient diets. These results suggest that a selenium-deficient diet for a short period of time decreases brain protection. principally in the substantia nigra, against oxidative damage.  相似文献   

8.
A Arregui  G R Barer  P C Emson 《Life sciences》1981,28(26):2925-2929
Exposure of 28 day old rats to moderate hypoxia (10% oxygen) for three weeks led to significant increases of immunoreactive levels of substance P and met-enkephalin in the substantia nigra but not in the corpus striatum, globus pallidus of hypothalamus.A similar group of animals exposed to hypoxia for three weeks showed decreased angiotensin converting enzyme activity in the corpus striatum and substantia nigra and decreased GABA levels in the substantia nigra. However, fifteen days after recovery from hypoxia these changes were no longer apparent.Exposure to chronic, moderate hypoxia can affect levels of putative neurotransmitters in the brain, and based on the present findings the substantia nigra or the striato-nigral pathways appear to be particularly vulnerable.  相似文献   

9.
Unilateral injection of 2 μg kainic acid into the substantia nigra of the rat results in a 45% decrease in tyrosine hydroxylase activity in the injected substantia nigra and in the ipsilateral corpus striatum. In contrast, the GABAergic nerve terminals in the substantia nigra are unaffected by this treatment. Injection of kainic acid into the striatum results in a 60% decrement in the activity of glutamate decarboxylase and of endogenous GABA levels in the ipsilateral substantia nigra whereas tyrosine hydroxylase activity remains unchanged; in addition, dopamine-sensitive adenylate cyclase activity in the ipsilateral substantia nigra decreases by 74%. These findings further support the hypothesis that intracerebral injections of kainic acid cause degeneration of neurons with cell bodies near the injection site while sparing axons passing through or terminating in the region.  相似文献   

10.
Bilateral electrolytic lesion of the striatonigral pathways (which convey massive afferents to the substantia nigra) caused a marked lowering of alpha-neo-endorphin (alpha-Neo) and dynorphin A(1-8) [Dyn A(1-8)] levels in the substantia nigra without affecting the alpha-Neo content in the ventral tegmental area. Moreover, unilateral infusion of the axon sparing neurotoxin ibotenate into the striatum, but not into the substantia nigra, decrease these two opioid peptides in the substantia nigra on the side ipsilateral to the lesion, failing to modify the alpha-Neo levels in the ventral tegmental area. Bilateral electrolytic lesion of the habenula augmented alpha-Neo content in the substantia nigra and ventral tegmental area at 8-30 days postlesion without affecting the nigral Dyn A(1-8). These results add further support to the view that alpha-Neo- and Dyn A(1-8)-containing neurons projecting to the substantia nigra originate in the striatum and descend through striatonigral pathways. The present data provide evidence that the habenula may participate in the regulation of the activity of alpha-Neo-immunoreactive neurons in the substantia nigra and ventral tegmental area.  相似文献   

11.
12.
The microinfusion of low doses of apomorphine into the striatum of anesthetized rats depressed the electrical activity of the neurons of the substantia nigra pars compacta while the infusion of bromocriptine had an excitatory or inhibitory effect. These data suggest that:1) the action of the two dopamine agonists on the striato-nigral pathway is different; 2) the striatum might contain dopaminergic receptors located on cells projecting to the substantia nigra with different roles in the feedback regulation of the latter; 3) the inhibitory action of systemically injected apomorphine is not simply due to a stimulation of dopamine “autoreceptors” but also to an action mediated by fibers descending from the striatum to the substantia nigra.  相似文献   

13.
Glial cell line-derived neurotrophic factor (GDNF) improves motor dysfunction associated with aging in rats and non-human primates, in animal models of Parkinson's disease, and may improve motoric function in patients with advanced Parkinson's disease. These improvements are associated with increased dopamine function in the nigrostriatal system, but the molecular events associated with this increase are unknown. In these studies, 100 micro g of GDNF was injected into the striatum of normal aged (24-month-old) male Fischer 344 rats. The protein levels and phosphorylation of TH, ERK1/2, and related proteins were determined by blot-immunolabeling of striatum and substantia nigra harvested 30 days after injection. In GDNF-treated rats, TH phosphorylation at Ser31 increased approximately 40% in striatum and approximately 250% in the substantia nigra. In the substantia nigra, there was a significant increase in ERK1 phosphorylation. In striatum, there was a significant increase in ERK2 phosphorylation. Microdialysis studies in striatum showed that both amphetamine- and potassium-evoked dopamine release in GDNF recipients were significantly increased. These data show that GDNF-induced increases in dopamine function are associated with a sustained increase in TH phosphorylation at Ser31, which is greatest in the substantia nigra and maintained for at least one month following a single striatal administration of GDNF. These findings, taken from the nigrostriatal system of normal aged rats, may help explain the long lasting effects of GDNF on dopamine function and prior studies supporting that a major effect of GDNF involves its effects on dopamine storage and somatodendritic release of dopamine in the substantia nigra.  相似文献   

14.
Abstract: This study was undertaken, using microdialysis, to compare the extracellular concentration of 3-methoxytyramine and dopamine in dialysate from the striatum and substantia nigra, after pargyline (75 mg/kg), after pargyline plus amphetamine (3 mg/kg), and after pargyline plus reserpine (5 mg/kg) administration. Treatment with pargyline alone increased the extracellular dopamine concentration by 70% in the striatum and by 140% in the substantia nigra and induced in both regions a time-dependent accumulation of 3-methoxytyramine. The addition of d-amphetamine to pargyline increased the extracellular dopamine concentration, compared with pargyline-treated controls, to the same extent in both the substantia nigra (maximally by 360%) and the striatum (maximally by 400%), but the concomitant increase of 3-methoxytyramine accumulation in the dialysate was relatively smaller in the substantia nigra compared with the striatum. Reserpine treatment decreased the extracellular dopamine concentration in both regions below the detection level (<10% of basal value). When pargyline was added to reserpine, the striatal extracellular dopamine concentration increased to 50% of pargyline-treated controls and the striatal 3-methoxytyramine accumulation was less than in pargyline-treated controls. However, in the substantia nigra, the addition of pargyline to reserpine resulted in dopamine concentrations as high as after pargyline only and the 3-methoxytyramine accumulation was not changed compared with pargyline-treated controls. In summary, our results indicate that dopamine in the substantia nigra is released from reserpine-sensitive storage sites and that pargyline-induced 3-methoxytyramine accumulation is a poor indicator of the local dopamine release. The latter observation may be explained by the fact that the dopamine-metabolizing enzyme, catechol-O-methyltransferase, is located inter alia in the dopamine-containing cell bodies/dendrites in the substantia nigra, in contrast to the situation in the terminals in the striatum where catechol-O-methyltransferase is located only in nondopaminergic cells.  相似文献   

15.
M C Carrillo  K Kitani  S Kanai  Y Sato  G O Ivy 《Life sciences》1992,50(25):1985-1992
In a previous study we have shown that chronic administration of (-)deprenyl increases activities of superoxide dismutase (SOD) and catalase (CAT) in rat striatum (1). The present study attempted to clarify how specific the effect of deprenyl is to certain tissues and brain regions in the rat. Two mg/kg/day of deprenyl was continuously infused s.c. in young male Fischer-344 rats. On the 22nd day, rats were sacrificed and enzyme activities of SOD and CAT were determined in several different brain regions and the liver. Activities of both SOD and CAT were significantly increased in striatum and substantia nigra but not in hippocampus, cerebellum or liver. Both types of SOD (i.e. Cu Zn-SOD and Mn-SOD) were significantly increased in striatum, substantia nigra. Interestingly, in cerebral cortices of three different regions, activities also tended to increase (especially those of Mn-SOD), although the increase was not so striking as in substantia nigra and striatum. The results confirm the previous observation that (-)deprenyl can increase free radical scavenger enzyme activities in striatum and provide further evidence that this effect is selective to certain brain regions and tissue types.  相似文献   

16.
1, 2, 3, 4-Tetrahydro-2-methyl-4, 6, 7-isoquinolinetriol (TMIQ) was synthesised and tested for activity as a dopamine-depleting agent in rat brain. After intracerebroventricular infusion, TMIQ caused reductions in dopamine concentrations in substantia nigra, striatum, hypothalamus, and dorsal raphe, and reduction in noradrenaline concentrations in locus coeruleus. TMIQ also reduced 5-hydroxytryptamine concentrations in dorsal raphe and substantia nigra, although with a lower potency. Comparisons between TMIQ and MPTP showed that they were approximately equipotent in depleting dopamine in the substantia nigra, hypothalamus, and dorsal raphe. Pretreatment of animals with a combination of monoamine oxidase A and B inhibitors completely prevented the TMIQ-induced reductions in dopamine concentrations in substantia nigra and hypothalamus. Direct unilateral intrastriatal injections of TMIQ produced marked ipsilateral reductions in striatal dopamine, correlating with a behavioural response consisting of turning towards the side of injection. The results suggest that TMIQ should be evaluated further as a possible MPTP-like compound, which may derive from endogenous β-hydroxylated catecholamines.  相似文献   

17.
Alteration of neurotensin receptors in MPTP-treated mice.   总被引:1,自引:0,他引:1  
We examined the sequential changes in neurotensin receptors in the striatum and substantia nigra of mouse brains lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by receptor autoradiography, in comparison with the alterations in dopamine uptake sites. The mice received four intraperitoneal injections of MPTP (10 mg/kg) at 1-h intervals and then the brains were analyzed at 6 h and 1, 3, 7, and 21 days after the treatments. [3H]Neurotensin and [3H]mazindol were used to label neurotensin receptors and dopamine uptake sites, respectively. [3H]Neurotensin binding was significantly decreased in the striatum from 6 h to 21 days after MPTP treatment. In the substantia nigra, pars reticulata also showed a significant decrease in [3H]neurotensin binding from 3 to 21 days post-MPTP treatment. However, no significant change in [3H]neurotensin binding was observed in the pars compacta even after 21 days. On the other hand, [3H]mazindol binding was markedly decreased in the striatum and substantia nigra from 6 h to 21 days after MPTP treatment. These results indicate that neurotoxin MPTP can produce a severe decrease in neurotensin receptors and dopamine uptake sites in the striatum and substantia nigra of mice. Thus, our findings provide evidence that the dysfunction in neurotensin receptors may be involved in the degenerative processes causing Parkinson's disease.  相似文献   

18.
We studied the effect of local administration of nicotine on the release of monoamines in striatum, substantia nigra, cerebellum, hippocampus, cortex (frontal, cingulate), and pontine nucleus and on the release of glutamic acid in striatum of rats in vivo, using microdialysis for nicotine administration and for measuring extracellular amine and glutamic acid levels. Following nicotine administration the extracellular concentration of dopamine, increased in all regions except cerebellum; serotonin increased in cingulate and frontal cortex; and norepinephrine increased in substantia nigra, cingulate cortex, and pontine nucleus. Cotinine, the major nicotine metabolite, had no effect at similar concentrations. The cholinergic antagonists mecamylamine and atropine, the dopaminergic antagonists haloperidol and sulpiride, and the excitatory amino acid antagonist kynurenic acid all inhibited the nicotine-induced increase of extracellular dopamine in the striatum. The fact that kynurenic acid almost completely prevented the effects of nicotine, and nicotine at this concentration produced a 6-fold increase of glutamic acid release, suggests that the effect of nicotine is mainly mediated via glutamic acid release.  相似文献   

19.
The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.  相似文献   

20.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号