首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that fluids collected from antigen-challenged skin blisters during the late phase reaction cause the release of substantial amounts of histamine (means = 42%, n = 14) from human basophils in vitro. Control fluids collected either during the immediate phase or from an unchallenged blister released less than or equal to 10% histamine from both basophils and lung mast cells. Late phase blister fluids induced low levels of histamine release from human lung cells (means = 11%, n = 4) that were slightly but not significantly greater than levels induced by control blister fluids. The characteristics of basophil release were similar to IgE-mediated stimuli in dose dependence, calcium and temperature requirements, and kinetics. The IgE dependence of the late phase blister fluid was demonstrated by desensitization of the basophils to anti-IgE, which obviated the response to anti-IgE and blister fluid but did not affect a non-IgE-mediated stimulus. Removal of the cell surface IgE with lactic acid also abolished the response to both anti-IgE and late phase blister fluid. Incubation of the "stripped" cells with serum containing IgE myeloma restored the response to anti-IgE but failed to affect response to late phase blister fluid. The characteristics of release obtained with this factor closely resemble those of an IgE-dependent histamine releasing factor from cultured macrophages previously described by our group.  相似文献   

2.
Human peripheral blood monocytes generated activities during 24-h culture that were capable of triggering histamine release from 17 of 18 human basophil donors. Monocytes and their in vitro transformed macrophages continued to elaborate these basophil histamine-releasing activities for at least 3 wk in culture. In the 18 basophil donors tested, maximum histamine release induced by monocyte supernatants was 33.8 +/- 5.9% (mean +/- SEM) of total basophil histamine content; optimum anti-IgE-induced release was 38.8 +/- 6.2%. Basophil histamine release in response to monocyte activities was optimal at 37 degrees C and at calcium concentrations of 2 to 5 mM. Release was greater than 90% complete 1 min after challenge and was inhibited by anti-allergic drugs. The mechanism of release appeared to be independent of IgE binding. Gel filtration of supernatants derived from both day 1 (monocyte stage) and day 14 (macrophage stage) cultures demonstrated activity peaks with approximate m.w. of 12,000 and 30,000. In contrast to the marked responsiveness of basophils, only 2 of 10 human lung mast cell preparations responded; release in those preparations was low: 3% and 13% histamine release, respectively. Thus, monocytes produce potent histamine-releasing activities with differential actions on basophils and mast cells.  相似文献   

3.
Studies of IgE-dependent histamine releasing factors: heterogeneity of IgE   总被引:18,自引:0,他引:18  
Nasal lavage fluids from unstimulated individuals contain a histamine-releasing factor (HRF) similar to those which we have previously described from macrophages, platelets, and from blister fluids obtained during the late cutaneous reaction. The nasal HRF was partially purified by ion-exchange chromatography and gel filtration. Although some m.w. heterogeneity was observed, the majority of the HRF eluted at an apparent m.w. range of 15,000 to 30,000. This partially purified HRF induced histamine release from basophils of certain individuals. Histamine release occurred via a mechanism which is IgE-dependent in that: basophils desensitized by exposure to anti-IgE in the absence of calcium no longer respond to HRF, and desensitization with HRF reduces responsiveness to anti-IgE; and removal of IgE from the basophil surface by using lactic acid renders cells unresponsive to HRF. We have further defined this IgE dependence and have shown that the reason that only selected basophil donors respond to HRF is due to a previously unrecognized, functional heterogeneity of IgE. Thus, passive sensitization using sera from responders restored the responsiveness of acid-stripped basophils and conferred responsiveness to basophils of a nonresponder with naturally unoccupied IgE receptors. Sera from nonresponders failed to do this even though similar numbers of IgE molecules were put onto the basophil surface in each case. This property of responder sera was due to IgE because both heating sera at 56 degrees C for 2 hr and passage of sera over anti-IgE-Sepharose (which removes greater than 90% of the IgE) markedly reduced the ability of sera to induce responsiveness, and because an excess of either purified IgE myeloma or purified penicillin-specific IgE antibody from a nonresponder competitively inhibited the ability of IgE from responder sera to induce responsiveness to HRF. We conclude that nasal lavage fluids contain an HRF which induces basophil histamine release in a specific, IgE-dependent fashion but only from individuals with the appropriate type of IgE. Because we have shown that basophils are recruited into the nose during the late-phase reaction, we suggest that nasal HRF may induce these cells to release histamine and other mediators which could contribute to the symptomatology of the late-phase reaction.  相似文献   

4.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

5.
Human basophils release approximately 90 pmol of LTC4/micrograms histamine when challenged with anti-IgE antibody, but donor to donor variation produces a 1000-fold range of response. There is little conversion to LTC4 to LTE4 in purified preparations of basophils, but conversion to LTE4 does occur if cell densities are high during incubation. Like histamine release, leukotriene release is calcium and temperature dependent and is complete in 20 min, with a t1/2 of approximately 8 min. The process of desensitization also ablates leukotriene release, but there is a distinct two phase process where leukotriene release is enhanced after 5 min of desensitization, whereas histamine release is inhibited and total ablation of leukotriene release occurs only after 45 min of desensitization. Human basophils respond well to stimulation with covalently cross-linked trimeric IgE myeloma but respond poorly to dimeric IgE. This differential sensitivity to the two forms of cross-linked IgE is most exaggerated in the context of leukotriene release, where dimer is 30-fold less efficacious and 100- to 1000-fold less potent than trimer on some donors' basophils. This dichotomy of response is also observed in antigen-challenged cells, where the bivalent hapten, BPO2, also poorly induces leukotriene release in accord with the fact that it predominantly induces dimeric cross-links of penicillin-specific IgE. Anti-IgE dose-response curves reveal a region of dimeric cross-link dominance that may explain the peculiar differences observed in pharmacologic studies of basophil release induced with antigen vs anti-IgE. In addition, there is a continuum of "releasability," where some donors' basophils display no response (histamine or leukotriene release) to dimeric IgE, and others' basophils are essentially equally responsive to both dimeric and trimeric IgE. This releasability difference manifests itself by conferring increased sensitivity to antigenic challenge in those donors' basophils capable of responding to dimeric cross-links such that these donors' basophils are capable of releasing histamine upon antigen challenge while possessing only 50 molecules of cell surface antigen-specific IgE; other dimer-insensitive donors' basophils require 6 to 10-fold greater IgE densities for equal histamine release.  相似文献   

6.
Basic characteristics of human lung mast cell desensitization   总被引:1,自引:0,他引:1  
Human lung parenchymal mast cells displayed both specific and nonspecific desensitization. The kinetics of both release and desensitization were approximately equal to 3 times faster than human basophils, but a similar relationship between release and desensitization suggests similar biochemistries in basophils and mast cells. Arachidonic acid metabolite (PGD2 and LTC4) release was slower to desensitize (t1/2 of 8 min) than histamine release (t1/2 of 3 min), the ratio of which is similar to the ratio observed in basophils. Ionophore A23187-induced release was unaffected by desensitization to anti-IgE antibody, and calcium-45 uptake was inhibited by desensitization, suggesting that desensitization inhibits the early post-cross-linking "influx" of calcium that is necessary for mediator release in mast cells. In contrast to the above similarities in basophil and mast cell desensitization, mast cell desensitization, unlike that of basophils was not inhibited by diisopropylfluorophosphate.  相似文献   

7.
We have reexamined the ability of anti-human IgG antibodies to induce histamine release from human basophils. A panel of purified murine mAbs with International Union of Immunological Societies-documented specificity for each of the four subclasses of human IgG was used. Of the 24 allergic subjects studied, the basophils of 75% (18/24) released greater than 10% histamine to one or more anti-IgG1-4 mAb, whereas none of the 13 nonatopic donor's basophils released histamine after stimulation with optimal amounts of anti-IgG mAb. The basophils of 85% (11/13) of the nonatopic donors did respond to anti-IgE challenge, as did 92% (22/24) of the atopic donor cells. Histamine release was induced most frequently by anti-IgG3, and 10/18 anti-IgG responder cells released histamine with mAb specific for two or more different subclass specificities. The rank order for induction of histamine release was anti-IgG3 greater than anti-IgG2 greater than IgG1 greater than anti-IgG4. As in our previous study using polyclonal anti-IgG, 100- to 300-micrograms/ml quantities of the anti-IgG mAb were required for maximal histamine release, about 1000-fold higher than those for comparable release with anti-human IgE. Specificity studies using both immunoassays and inhibition studies with IgE myeloma protein indicated that anti-IgG induced histamine release was not caused by cross-reactivity with IgE. Ig receptors were opened by lactic acid treatment so that the cells could be passively sensitized. Neither IgE myeloma nor IgG myeloma (up to 15 mg/ml) proteins could restore the response to anti-IgG mAb. However, sera from individuals with leukocytes that released histamine upon challenge with anti-IgG mAb could passively sensitize acid-treated leukocytes from both anti-IgG responder and nonresponder donors for an anti-IgG response. The only anti-IgG mAb that induced release from these passively sensitized cells were those to which the serum donor was responsive. Sera from non-IgG responders could not restore an anti-IgG response. These data led to the hypothesis that the IgG specific mAb were binding to IgG-IgE complexes that were attached to the basophil through IgE bound to the IgE receptor. This was shown to be correct because passive sensitization to anti-IgG could be blocked by previous exposure of the basophils to IgE. We conclude that anti-IgG-induced release occurs as a result of binding to IgG anti-IgE antibodies and cross-linking of the IgE receptors on basophils.  相似文献   

8.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

9.
The number of IgE molecules bound to human basophils was calculated from direct measurements of the IgE dissociated after exposing leukocytes to pH 3.7 acetate buffer in the cold. In 18 donors studied, cell-bound IgE ranged from 4000 to 500,000 molecules/basophil and correlated with the serum IgE concentration (r = 0.89, p less than 0.001) which ranged from 5 to 3,000 ng/ml. Sensitivity of these cells to anti-IgE was tested to explore the relationship between cell-bound IgE and the concentration of anti-IgE required for histamine release. Cells from some nonatopic donors (4000 to 100,000 IgE molecules/basophil) were as sensitive as cells from allergic donors (100,00 to 500,000 IgE molecules/basophil). Moreover, cells from donors having approximately the same cell-bound IgE concentration varied widely in their sensitivity to anti-IgE. We conclude that an intrinsic property of human basophils ("releasability") is an important parameter in determing mediator release.  相似文献   

10.
We have studied the effects of permanent oligomers of human IgE produced using the cross-linking reagent, dimethyl suberimidate, on histamine release from human basophils. IgE dimers were found to be sufficient stimuli for both release and desensitization of these cells; monomeric IgE had no effect. Histamine release was augmented by deuterium oxide (D2O) in the medium, but D2O was not an absolute requirement to observe release. Desensitization by the dimeric IgE was specific in that the response to anti-IgE was not affected by preincubation of the leukocytes with the IgE dimer under suboptimal releasing conditions. IgE trimers and higher oligomers of IgE also caused both release and desensitization. IgE trimers were 3- to 4-fold more effective than IgE dimers with regard to the amount required for 50% histamine release. Dilution studies with monomeric IgE suggested that the difference was due to the presence of more "active" dimers in the trimeric IgE fractions. We conclude that dimeric IgE, by juxtaposing 2 receptors on the basophil membrane, is the "unit signal" for both release and desensitization of these cells.  相似文献   

11.
12.
Recombinant IL-3 induces histamine release from human basophils   总被引:5,自引:0,他引:5  
Human rIL-3 induces histamine release from some human basophils, with cells from atopics responding to a greater extent than non-atopic donors. The dose response curves were highly variable. IL-3 was active on purified basophils and the release process was slower and required more calcium than anti-IgE. Removal of surface IgE from basophils rendered them unresponsive to IL-3. The response could be restored by passive sensitization of basophils with IgE+, IgE known to bind histamine-releasing factors, and not IgE-, IgE unreactive with histamine-releasing factors. Thus, IL-3 uncovers IgE heterogeneity. IL-3 does not, however, directly interact with IgE+. Rather, passive sensitization with IgE+ or stimulation of basophils with low concentrations of several secretagogues renders the cells sensitive to IL-3. IL-3 may well play a pro-inflammatory role by potentiating the effects of IgE+ or various secretagogues.  相似文献   

13.
To understand the biochemical events that occur in the airways after rhinovirus (RV) infection, we developed for the first time a model in which the cell lines from human mast cells (HMC-1) and basophils (KU812) can be infected with RV14, a major group RV. Viral infection was confirmed by demonstrating that viral titers in culture supernatants, and RV RNA increased with time. RV14 infection alone and a combination of PMA plus calcium ionophore A23187, did not increase histamine production by these cells, although IgE plus anti-IgE increased the histamine production. However, histamine content in the supernatants increased in response to PMA plus A23187, or IgE plus anti-IgE after RV14 infection. PMA plus A23187 or IgE plus anti-IgE induced the production of IL-8 and GM-CSF in supernatants of HMC-1 cells and IL-4 and IL-6 in supernatants of KU812 cells. RV14 infection further increased the production of the cytokines, whereas RV14 infection alone did not alter the production of the cytokines by these cells. An Ab to ICAM-1 inhibited RV14 infection of the cells and decreased the production of cytokines and histamine after RV14 infection. RV14 infection enhanced the increases in intracellular calcium concentration and activation of NF-kappaB by PMA plus A23187 in the cells. These findings suggest that RV14 infection may prime the cytokine and histamine production from mast cells and basophils and may cause airway inflammation in asthma.  相似文献   

14.
Previously, infusions of an anti-IgE mAb (rhumAb-E25) in subjects decreased serum IgE levels, basophil IgE and FcepsilonRIalpha surface density, and polyclonal anti-IgE and Ag-induced basophil histamine release responses. We hypothesized that these effects would be reversed in vivo by discontinuation of infusions and in vitro by exposing basophils to IgE. Subjects received rhumAb-E25 biweekly for 46 wk. Blood samples taken 0-52 wk after rhumAb-E25 were analyzed for serum IgE and basophil expression of IgE, FcepsilonRIalpha, and CD32. Basophil numbers were unaffected by infusions. Eight weeks after infusions, free IgE levels rose in vivo but did not reach baseline. Basophil IgE and FcepsilonRIalpha rose in parallel with free IgE while CD32 was stable. FcepsilonRI densities, measured by acid elution, returned to 80% of baseline, whereas histamine release responses returned to baseline. Basophils cultured with or without IgE or IgG were analyzed for expression of IgE, FcepsilonRIalpha, and CD32. By 7 days with IgE, expression of IgE and FcepsilonRIalpha rose significantly, whereas cultures without IgE declined. IgE culture did not effect CD32. IgG culture did not effect expression of any marker. The present results strongly suggest that free IgE levels regulate FcepsilonRIalpha expression on basophils.  相似文献   

15.
Mechanisms favoring the recruitment of circulating human basophils to extravascular sites of allergic inflammation are unknown. The basophil secretagogues anti-IgE, and pollen allergens rye grass I and ragweed Ag E (Lol p I and Amb a I) were tested for their ability to promote basophil adherence to umbilical vein endothelial cells. Co-incubation of endothelial cells and basophils with anti-IgE resulted in time and dose-dependent increases in basophil adhesion. These effects were due to activation of the basophil, required both magnesium and calcium, occurred before or in the absence of histamine release, and were seen at concentrations of stimulus below the usual range of secretagogue activity. In contrast, anti-IgE or Ag stimulation of neutrophils, or basophils from donors non-responsive to anti-IgE or Ag with respect to histamine release, had no effect on cell adherence. mAb 60.3, recognizing the CD18 leukocyte adhesion molecule, inhibited anti-IgE-induced enhancement of basophil-endothelial cell binding. Exposure of basophils to low concentrations of Ag in vivo may selectively initiate basophil infiltration into tissue sites of allergic inflammation by enhancing their adherence to endothelium.  相似文献   

16.
Human basophils can be desensitized to IgE-mediated stimuli either specifically (to the desensitizing antigen only) or nonspecifically (to all antigens). It has been suggested that the specificity of desensitization depends on the number of membrane-bound, antigen-specific IgE antibody molecules per basophil. We have varied the number of IgE antibody molecules/basophil by passive sensitization of mixed leukocyte preparations with increasing concentrations of purified IgE anti-penicillin (BPO) antibody. The cells were then desensitized with penicillin-human serum albumin (BPO-HSA). Desensitization was specific (lack of response to BPO-HSA only) with 1000 specific antibody molecules/basophil, and increasingly nonspecific (greater than 70% desensitization to rechallenge with anti-IgE and ragweed antigen E as well as lack of response to BPO-HSA) as the number of antibody molecules was increased to 14,000. This formally established that the number of specific IgE antibody molecules/basophil determines the mode of desensitization.  相似文献   

17.
Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX greater than forskolin greater than PGE2 greater than isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.  相似文献   

18.
We have previously purified and partially characterized histamine releasing factors (HRF), which were derived from a mixture of human mononuclear cells and platelets. We now report the effect of IL-8 upon HRF-, connective tissue activating peptide III (CTAP III)-, and IL-3-induced histamine release from human basophils. We determined that IL-8 itself, at concentrations between 10(-7) to 10(-11) M, does not release histamine from basophils, although positive results are observed in two of 26 subjects at 10(-7) M. Unfractionated (crude) HRF released histamine in 25 of 26 donors, in the range of 6.7% to 100% of total basophil histamine stores. When basophils were preincubated with IL-8 (10(-7) to 10(-11) M) for 5 min, followed by a 40-min incubation with HRF, histamine release was significantly inhibited in 20 of 25 donors. Inhibition was observed at as little as 10(-11) M IL-8, with maximal inhibition being attained at 10(-9) M. HRF-containing supernatants contain a mixture of different histamine-releasing moieties. To better define which factor(s) may be inhibited by IL-8, fractionated supernatants, purified CTAP III, and IL-3 were studied. Histamine release produced by two different HRF-containing chromatographic fractions (HRFvoid and HRFpeak 2) and purified CTAP-III (5 micrograms/ml) was inhibited by IL-8 in 10 of 12 donors, three of three donors, and seven of 10 donors, respectively. IL-3 (5000 U/ml)-dependent histamine release was inhibited by IL-8 in all subjects tested. In contrast, histamine release by anti-IgE and FMLP was not affected by IL-8. Thus, IL-8 appears to be an inhibitor of cytokine-like molecules that induce histamine release and may represent the previously described 8-kDa histamine release inhibitory factor present in mononuclear cell supernatants.  相似文献   

19.
Human basophils have been implicated in the pathogenesis of chronic spontaneous urticaria (CSU), and substance P (SP) is a possible candidate as histamine-releasing factor in some patients with CSU. However, little is known of relationship between basophils and SP in CSU. In the present study, we investigated expression of SP and NK1R on basophils from patients with CSU, and influence of SP on basophil functions by using flow cytometry analysis, basophil challenge, and mouse sensitization model techniques. The results showed that plasma SP level and basophil numbers in CSU patients were higher than that in HC subject. The percentages of SP+ and NK1R+ basophils were markedly elevated in CSU blood in comparison with HC blood. Once added, SP induced up to 41.2 % net histamine release from basophils of CSU patients, which was comparable with that provoked by anti-IgE, and fMLP. It appeared that SP induced dramatic increase in blood basophil numbers of mice following peritoneal injection. Ovalbumin (OVA)-sensitized mice had much more SP+ and NK1R+ basophils in blood than non-sensitized mice. In conclusion, the elevated plasma concentration of SP, upregulated expression of SP and NK1R on basophils, and the ability of SP in induction of basophil degranulation and accumulation indicate strongly that SP is most likely a potent proinflammatory mediator, which contributes greatly to the pathogenesis of CSU through basophils. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of CSU.  相似文献   

20.
The aim of the study was to analyse the effect of interleukin-4 (IL-4) on allergen and anti-IgE mediated histamine release from basophils and human skin mast cells and to assess whether soluble recombinant interleukin-4 receptor (sIL4R) can inhibit these effects. Anti-IgE stimulated histamine release from peripheral blood basophils and mast cells of atopic donors was enhanced after preincubation with IL-4, whereas after preincubation with sIL-4R it was inhibited. These effects were even more pronounced when samples were stimulated with a clinically relevant allergen. In IL-4 preincubated skin mast cells, there was a similar enhancement of anti-IgE stimulated histamine release, which could again be inhibited by sIL-4R. The effects of IL-4 and sIL4R were dose- and time-dependent. Mice sensitized to ovalbumin and treated with soluble recombinant murine sIL-4R showed significantly reduced immediate-type cutaneous hypersensitivity responses compared with untreated mice. These in vivo effects were IgE independent, since there were no significant differences in total and allergen specific IgE/IgG1 antibody titres between treated and untreated mice. This indicates that IL4 exerts priming effects on histamine release by effector cells of the allergic response and that these effects are potently antagonized by soluble IL-4R both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号