首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 5-(nitroaryl)-1,3,4-thiadiazoles bearing certain sulfur containing alkyl side chain similar to pendent residue in tinidazole molecule were synthesized and evaluated against Helicobacter pylori using disk diffusion method. The synthesized compounds were also evaluated for their antibacterial, antifungal and cytotoxic effects. Study of the structure-activity relationships of this series of compounds indicated that both the structure of the nitroaryl unit and the pendent group on 2-position of 1,3,4-thiadiazole ring dramatically impact the anti-H. pylori activity. While compound 7a containing 2-[2-(ethylsulfonyl)ethylthio]-side chain from nitrothiophene series was the most potent compound tested against clinical isolates of H. pylori, however, nitroimidazoles 6c and 7c were found to be more promising compounds because of their respectable anti-H. pylori activity besides less cytotoxic effects.  相似文献   

2.
The respiratory chain of Helicobacter pylori has been investigated. The total insensitivity of activities of NADH dehydrogenase to rotenone and of NADH-cytochrome c reductase to antimycin is indicative of the absence of the classical complex I of the electron transfer chain in this bacterium. NADPH-dependent respiration was significantly stronger than NADH-dependent respiration, indicating that this is a major respiratory electron donor in H. pylori. Fumarate and malonate exhibited a concentration-dependent inhibitory effect on the activity of succinate dehydrogenase. The activity of succinate-cytochrome c reductase was inhibited by antimycin, implying the presence of a classical pathway from complex II to complex III in this bacterium. The presence of NADH-fumarate reductase (FRD) was demonstrated in H. pylori and fumarate could reduce H2O2 production from NADH, indicating fumarate to be an endogenous substrate for accepting electrons from NADH. The activity of NADH-FRD was inhibited by 2-thenoyltrifluoroacetone. A tentative scheme for the electron transfer pathway in H. pylori is proposed, which may be helpful in clarifying the pathogenesis of H. pylori and in opening new lines for chemotherapy against this bacterium.  相似文献   

3.
The emergence of antibiotic-resistant Helicobacter pylori is of concern in the treatment of H. pylori-associated gastroduodenal diseases. As the organism was reported to bind gastric mucin, we used porcine gastric mucin as substrate to assess the antiadhesive property of polysaccharides derived from Spirulina (PS), a commercially available microalga, against the binding of H. pylori to gastric mucin. Results show that polysaccharides prevented H. pylori from binding to gastric mucin optimally at pH 2.0, without affecting the viability of either bacteria or gastric epithelial cells, thus favouring its antiadhesive action in a gastric environment. Using ligand overlay analysis, polysaccharide was demonstrated to bind H. pylori alkyl hydroperoxide reductase (AhpC) and urease, which have shown here to possess mucin-binding activity. An in vivo study demonstrated that bacteria load was reduced by >90% in BALB/c mice treated with either Spirulina or polysaccharides. It is thus suggested that polysaccharides may function as a potential antiadhesive agent against H. pylori colonization of gastric mucin.  相似文献   

4.
Two characteristic monoclonal antibodies (HpU-2 and -18) out of 26 monoclonal antibodies (HpU-1 approximately 26) produced against Helicobacter pylori (H. pylori) urease showed a strong inhibitory effect against the enzymatic activity of the urease. Epitope mapping about some monoclonal antibodies of the HpU-series inhibiting enzymatic activity was performed by using a surface plasmon resonance apparatus and by digesting H. pylori urease with trypsin, followed by mass spectroscopy. The sequences of the epitopes recognized by HpU-2 and -18 were SVELIDIGGNRRIFGFNALVDR (22 mer) and IFGFNALVDR (10 mer), respectively. The former sequence is present as a part of a loop structure at a position close to the C-terminal of the alpha-subunit of H. pylori urease, although it has been suggested that the active site of the urease resides in the beta-subunit. The above peptide (22 mer) was chemically synthesized in a linear and cyclic form, and its conjugate with BSA was immunized in rabbits. The resultant serum induced by the linear form could specifically bind to H. pylori infecting human gastric mucosa. These results suggest that the above sequence (22 mer) must be an important epitope, although it locates in the alpha-subunit but not in the beta-subunit.  相似文献   

5.
To elucidate the antibacterial activity of Gosyuyu, the crude extract from the fruit of Evodia rutaecarpa, a Chinese herbal medicine, has been fractionated chromatographically, and each fraction was assayed for antibacterial activity against Helicobacterpylori (H. pylori) in vitro. As the result, a single spot having marked antibacterial activity against H. pylori was obtained and the chemical structure was analyzed. The isolated compound was revealed to be a novel alkyl quinolone alkaloid based on the solubility, IR spectra, NMR analysis and mass spectrometric data after purification by TLC of silica. We compared the antimicrobial activity of this compound with that of other antimicrobial agents and examined susceptibility of various intestinal pathogens. As the result, the new quinolone compounds obtained from Gosyuyu extracts were found to be a mixture of two quinolone alkaloids, 1-methyl-2-[(Z)-8-tridecenyl]-4-(1H)-quinolone and 1-methyl-2-[(Z)-7-tridecenyl]-4-(1H)-quinolone (MW: 339), reported previously. The minimum inhibitory concentration (MIC) of these compounds against reference strains and clinically isolated H. pylori strains were less than 0.05 microg/ml, which was similar to the MIC of amoxicillin and clarithromycin that are used worldwide for the eradication of H. pylori, clinically. Furthermore, it was noted that the antimicrobial activity of these compounds was highly selective against H. pylori and almost non-active against other intestinal pathogens. The above results showed that these alkyl methyl quinolone (AM quinolones) alkaloids were useful for the eradication of H. pylori without affecting other intestinal flora.  相似文献   

6.
Plaunotol, a known antiulcer drug, has antibacterial activities against Helicobacter pylori. Plaunotol thiourea derivatives 2--4 and diol derivatives 6--10 were designed in search for a compound with high antibacterial activities. Thiourea derivatives 2--4 were synthesized regioselectively using our effective synthetic route for plaunotol (1), and diol derivatives 6--10 were also synthesized. Their antibacterial activities against H. pylori are described and we found that the most potent antibacterial agent was C1-thiourea derivative 2c.  相似文献   

7.
Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA(183-203)) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

8.
BACKGROUND: Although the anti-Helicobacter pylori activity of bismuth is well established, the therapeutic potential of other metal ions against the organism is not known. MATERIALS AND METHODS: We measured the minimum inhibitory concentrations of a series of metal ions, including several cobalt (II) compounds against four type strains and seven clinical isolates of H. pylori using three standard broth culture media and a defined medium. Other intestinal bacteria were also investigated for specificity of action. RESULTS: Cobalt chloride had marked activity against H. pylori (minimum inhibitory concentration range was 0.03-1.0 mg/l). The effect was specific because other transition metals had no effect and other intestinal bacteria were not affected by cobalt chloride. Activity was attributable to free cobalt ions as ligands inhibited activity in proportion to their affinity for the ions. Inhibition of cobalt activity was also observed in the presence of nickel, in a dose dependent fashion. However, cobalt activity was not directed towards the nickel-dependent urease enzyme because its effect was similar in wild-type and urease negative mutant strains of H. pylori. Finally, the viability of H. pylori was reduced at the same rate with 2 mg/l cobalt as with 1 mg/l amoxicillin. CONCLUSIONS: Cobalt competes for nickel in its acquisition by H. pylori, but mediates toxicity in a nonurease dependent fashion. As cobalt MIC is similar to some antibiotics and 10 to a hundred times lower than for bismuth, cobalt may represent an effective form of therapy for H. pylori infection.  相似文献   

9.
Geum iranicum Khatamsaz, belonging to the Rosaceae family, is an endemic plant of Iran. The methanol extract of the roots of this plant showed significant activity against one of the clinical isolates of Helicobacter pylori which was resistant to metronidazole. The aim of this study was the isolation and evaluation of the major compounds of G. iranicum effective against H. pylori. The compounds were isolated using various chromatographic methods and identified by spectroscopic data (1H and 13C NMR, HMQC, HMBC, EI-MS). An antimicrobial susceptibility test was performed employing the disk diffusion method against clinical isolates of H. pylori and a micro dilution method against several Gram-positive and Gram-negative bacteria; additionally the inhibition zone diameters (IZD) and minimum inhibitory concentrations (MIC) values were recorded. Nine compounds were isolated: two triterpenoids, uvaol and niga-ichigoside F1, three sterols, beta-sitosterol, beta-sitosteryl acetate, and beta-sitosteryl linoleate, one phenyl propanoid, eugenol, one phenolic glycoside, gein, one flavanol, (+)-catechin, and sucrose. The aqueous fraction, obtained by partitioning the MeOH extract with water and chloroform, was the most effective fraction of the extract against all clinical isolates of H. pylori. Further investigation of the isolated compounds showed that eugenol was effective against H. pylori but gein, diglycosidic eugenol, did not exhibit any activity against H. pylori. The subfraction D4 was the effective fraction which contained tannins. It appeared that tannins were probably the active compounds responsible for the anti-H. pylori activity of G. iranicum. The aqueous fraction showed a moderate inhibitory activity against both Gram-positive and Gram-negative bacteria. The MIC values indicated that Gram-positive bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis are more susceptible than Gram-neagative bacteria including Escherichia coli and Pseudomonas aeruginosa.  相似文献   

10.
Since green tea catechins are known to have antimicrobial activity against a variety of microorganisms, their possible effects on Helicobacter pylori in combination with antibiotics were examined. Fifty-six clinical isolates of H. pylori, including 19 isolates highly resistant to metronidazole (MTZ) and/or clarithromycin (CLR), were used to determine in vitro sensitivity to tea catechins. The MIC90 of both epigallocatechin gallate (EGCg) and epicatechin gallate (ECg) was 100 microg/ml. However, other tea catechins tested did not show any anti-H. pylori activity. Highly antibiotic-resistant clinical isolates showed a similar sensitivity to both EGCg and ECg. The kinetic study of antibacterial activity in liquid cultures revealed a relatively slow but strong activity on the growth of H. pylori. In combination with sub-MIC of amoxicillin (AMX), the antibacterial activity of AMX was significantly enhanced by the presence of EGCg. To estimate the general combination effect between EGCg and other antibiotics, such as MTZ and CLR, on the antibacterial activity against clinical isolates, the fraction inhibitory concentration (FIC) was determined by checkerboard study. The FIC indexes showed additive effects between EGCg and antibiotics tested. These results indicatethat EGCg may be a valuable therapeutic agent against H. pylori infection.  相似文献   

11.
体外拮抗幽门螺杆菌的人嗜酸乳杆菌菌株的选育   总被引:7,自引:1,他引:6  
目的 探讨人嗜酸乳杆菌对幽门螺杆菌(Helicobacter pylori,HP)毒力株的体外拮抗作用,筛选出对HP毒力株有明显拮抗作用的嗜酸乳杆菌菌株。方法 从健康人胃肠道中分离出52株嗜酸乳杆菌可疑株,通过其培养特性,生理特性,生化反应及代谢产物测定等进行鉴定,获得26株嗜酸乳杆菌。同时,从临床患者胃活检标本中分离出23株HP菌株,用PCR方法筛选出cagA阳性HP毒力株,然后,采用打孔法进行嗜酸乳杆菌培养上清拮抗HP毒力株的实验,以1%的乳酸作对照。结果 筛选出4株对HP毒力株有明显拮抗作用的嗜酸乳杆菌,这种拮抗作用不依赖嗜酸乳杆菌分泌的乳酸。结论 人嗜酸乳杆菌在体外对HP毒力株具有明显拮抗作用。该研究为应用微生态疗法治疗HP感染提供了理论基础。  相似文献   

12.
The urease of Helicobacter pylori (formerly Campylobacter pylori) has been partly purified by fast protein liquid chromatography. This material contained 10 nm doughnut-like structures when examined by electron microscopy and comprised three major polypeptides (61 kDa, 56 kDa and 28 kDa). Only two of these polypeptides (61 kDa and 28 kDa) were observed in urease-containing material isolated by preparative non-denatured PAGE. Monoclonal antibodies (mAbs) were produced which were directed against two of these polypeptides (56 kDa and 28 kDa). Only mAbs directed against the 28 kDa polypeptide inhibited or captured urease activity. These results suggest that the 56 kDa polypeptide is not essential for enzyme activity. Anti-urease mAbs were used in an indirect immunogold technique to localize the enzyme at the ultrastructural level. In both prefixed bacteria and ultrathin cryosectioned bacteria the enzyme was located on the cell surface and in material apparently shed from that surface.  相似文献   

13.
BACKGROUND AND AIM: Helicobacter pylori is known to be a major pathogenic factor in the development of gastritis, peptic ulcer disease and gastric cancer. Recently, chicken egg yolk immunoglobulin Y (IgY) has been recognized as an inexpensive antibody source for passive immunization against gastrointestinal infections. The present study was designed to investigate the effect of anti-urease IgY on H. pylori infection in Mongolian gerbils. METHODS: H. pylori-infected Mongolian gerbils were administered a diet containing anti-urease IgY, with or without famotidine (F). After 10 weeks, bacterial culture and measurement of the gastric mucosal myeloperoxidase (MPO) activity were performed. In a second experiment, another group of gerbils was started on a diet containing F + IgY a week prior to H. pylori inoculation. After 9 weeks, these animals were examined. RESULTS: In the H. pylori-infected gerbils, there were no significant differences in the level of H. pylori colonization among the different dietary and control groups. However, the MPO activity was significantly decreased in the H. pylori group administered the F + IgY diet compared with that in the H. pylori group administered the IgY, F, or control diet. Furthermore, in the gerbils administered the F + IgY diet prior to the bacterial inoculation, inhibition of H. pylori colonization and suppression of the elevated gastric mucosal MPO activity were observed. CONCLUSIONS: Oral administration of urease-specific IgY not only inhibited H. pylori disease activity in H. pylori-infected gerbils, but also prevented H. pylori colonization in those not yet infected. These encouraging results may pave the way for a novel therapeutic and prophylactic approach in the management of H. pylori-associated gastroduodenal disease.  相似文献   

14.
Contribution of dppA to urease activity in Helicobacter pylori 26695   总被引:5,自引:0,他引:5  
Davis GS  Mobley HL 《Helicobacter》2005,10(5):416-423
BACKGROUND: The gastric pathogen Helicobacter pylori produces urease in amounts up to 10% of its cell protein. This enzyme, which catalyzes the hydrolysis of urea to ammonia and carbon dioxide, protects the bacterium from gastric acid. Urease, a nickel metalloenzyme, requires active uptake of nickel ions from the environment to maintain its activity. NixA is a nickel transport protein that resides in the cytoplasmic membrane. Mutation of nixA significantly reduces but does not abolish urease activity, strongly suggesting the presence of a second transporter. We postulated that the dipeptide permease (dpp) genes that are homologous to the nik operon of Escherichia coli could be a second nickel transporter. The predicted Dpp polypeptides DppA, DppC, and DppD of H. pylori share approximately 40%, 53%, and 56% amino acid sequence identity with their respective E. coli homologs. METHODS: A mutation in dppA, constructed by insertional inactivation with a chloramphenicol resistance cassette, was introduced by allelic exchange into H. pylori strain 26695. RESULTS: When compared to the parental strain, urease activity was not decreased in a dppA mutant. CONCLUSIONS: DppA does not contribute to the synthesis of catalytically active urease in H. pylori 26695 and is likely not a nickel importer in H. pylori.  相似文献   

15.
Objectives. The aim of this study was to compare the dissolution, bioavailability, and anti– Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate. This could, first, provide insights into the mechanism of action of bismuth and, second, help to develop optimal therapeutic strategies.
Methods. Solubility and aquated size of bismuth species were determined in human gastric juice, while absorption into blood and urinary excretion of bismuth was determined in volunteers. Activity against H. pylori was determined in vitro in the presence and absence of antibiotics, while H. pylori eradication was compared in vivo.
Results. Bismuth from colloidal bismuth subcitrate was at least 10% soluble and ultrafilterable and was absorbed in volunteers (>0.5%), whereas that from bismuth subnitrate was insoluble and not absorbed (<0.01%). Colloidal bismuth subcitrate was active against H. pylori (mean inhibitory concentration, ≤12.5 μg/ml), while bismuth subnitrate was inactive (>400 μg/ml); neither was synergistic with antibiotics. With in vivo triple therapy, bismuth subnitrate was as effective as colloidal bismuth subcitrate in eradicating H. pylori (74% and 70% eradicated, respectively).
Conclusions. Colloidal bismuth subcitrate, unlike bismuth subnitrate, is partially soluble, absorbed in humans, and directly toxic to H. pylori in vitro. Surprisingly, however, these preparations had similar efficacy in vivo against H. pylori within triple therapy, suggesting that bismuth compounds may also exhibit indirect antimicrobial effects. We propose that this is an effect on the gastric mucus layer. Nonabsorbable bismuth compounds should be preferentially considered in bismuth-based therapies against H. pylori , as they would minimize toxicity while maintaining efficacy.  相似文献   

16.
Different amounts of ingested alcohol can have distinct effects on the human body. However, there is limited research on chronic alcohol consumption with Helicobacter pylori infection. We sought to investigate the relationship between the cytokine profile, oxidative balance and H. pylori infection in subjects with chronic alcohol consumption. A total of 142 subjects were divided into three groups: 59 subjects with chronic alcohol ingestion and H. pylori infection (group A); 53 subjects with chronic alcohol ingestion without H. pylori infection (group B); and 30 control subjects (group C). The serum levels of CagA, interleukin (IL)-10, E-selectin, TNF-α, malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA). We found that the ages and serum H. pylori CagA levels among the three groups, as well as both the mean drinking age and the mean daily alcohol consumption between groups A and B, were matched and comparable. Comparing the BMIs among the three groups, the BMI differences were found to be statistically significant (F=3.921, P<0.05). Compared with group C, the BMIs in groups A and B were significantly higher (P<0.001 and P<0.01, respectively); however, the BMI differences between group A and group B were not statistically significant (P>0.05). Additionally, no differences in the serum CagA levels were found in comparisons among the groups (all P>0.05). The serum IL-10 and E-selectin levels in group A were significantly lower than those in group B (serum IL-10: P<0.05; E-selectin: P<0.05). The serum IL-10 in group A was significantly higher than that in group C (P<0.01); the serum E-selectin levels in group A did not significantly differ compared with those in group C (P>0.05). Furthermore, the serum IL-10 and E-selectin levels in group B were significantly higher than those in group C (serum IL-10: P<0.001; E-selectin: P<0.05); however, the serum TNF-α levels did not differ among groups (all P>0.05). Although the serum levels of MDA and SOD in groups A and B were slightly lower than those in group C, there were no significant differences among groups (all P>0.05). In conclusion, we believe that H. pylori infection might cause a significant inhibition of certain cytokine profiles in subjects with chronic alcohol ingestion. Moreover, chronically ingested alcohol may exert an adjusted inflammatory effect, but there was no association between H. pylori infection, chronic alcohol consumption and oxidative balance.  相似文献   

17.
Asparaginase was purified from Helicobacter pylori 26695 and its pathophysiological role explored. The K(m) value of asparagine was 9.75 ± 1.81 μM at pH 7.0, and the optimum pH range was broad and around a neutral pH. H. pylori asparaginase converted extracellular asparagine to aspartate. H. pylori cells were unable to take up extracellular asparagine directly. Instead, aspartate produced by the action of the asparaginase was transported into H. pylori cells, where it was partially converted to β-alanine. Asparaginase exhibited striking cytotoxic activity against histiocytic lymphoma cell line U937 cells via asparagine deprivation. The cytotoxic activity of live H. pylori cells against U937 cells was significantly diminished by deletion of the asparaginase gene, indicating that asparaginase functions as a cytotoxic agent of the bacterium. The cytotoxic effect was negligible for gastric epithelial cell line AGS cells, suggesting that the effect differs across host cell types. An asparaginase-deficient mutant strain was significantly less capable of colonizing Mongolian gerbils. Since asparagine depletion by exogenous asparaginase has been shown to suppress lymphocyte proliferation in vivo, the present results suggest that H. pylori asparaginase may be involved in inhibition of normal lymphocyte function at the gastric niche, allowing H. pylori to evade the host immune system.  相似文献   

18.
Helicobacter pylori, a microaerophilic Gram-negative spiral bacterium residing in the human stomach, contains a small size soluble cytochrome c. This cytochrome c was purified from the soluble fraction of H. pylori by conventional chromatographies involving octyl-cellulose and CM-Toyopearl. Its reduced form gave an alpha absorption band at 553 nm, and thus the cytochrome was named H. pylori cytochrome c-553. The cytochrome, giving a band below 10,000 Da upon SDS-PAGE, was determined to have a mass of 8,998 by time of flight mass spectroscopy. Its N-terminal peptide sequence was TDVKALAKS---, indicating that the nascent polypeptide was cleaved to produce a signal peptide of 19 amino acid residues and a mature protein composed of 77 amino acid residues. The cb-type cytochrome c oxidase oxidized ferrocytochrome c-553 of this bacterium actively (V(max) of about 250 s(-1)) with a small K(m) (0.9 microM). Analysis of the effect of the salt concentration on the oxidase activity indicated that oxidation of cytochrome c-553 is highly inhibited under high ionic conditions. The amino acid sequence of H. pylori cytochrome c-553 showed the closest similarity to that of Desulfovibrio vulgaris cytochrome c-553, and these sequences showed a weak relationship to that of the cytochrome c(8)-group among class I cytochromes c.  相似文献   

19.
Shi T  Liu WZ  Gao F  Shi GY  Xiao SD 《Helicobacter》2005,10(1):71-79
BACKGROUND: Although a series of vaccines against Helicobacter pylori have emerged in the past 10 years, the mechanism involved in their protective effect is yet to be elucidated, and more effective vaccine adjuvants remain to be developed. In this study, CpG-oligodeoxynucleotide (CpG-ODN) was investigated as a new candidate for a H. pylori vaccine adjuvant. Furthermore, the role of T helper 1 (Th1) type response and interferon (IFN)-gamma in the protective immunity was explored. METHODS: C57BL/6 mice and IFN-gamma knockout mice were intranasally or orally immunized with H. pylori whole cell sonicate (WCS)/CpG-ODN and challenged with different doses [5 x 10(8) and 5 x 10(6) colony-forming units (CFU)] of H. pylori. The protective effect was assessed as the percentage of noninfected mice. The responsive antibodies and cytokines were analyzed using an enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS: The prevention rates against H. pylori infection in mice intranasally immunized with WCS plus CpG-ODN were dramatically higher than those in sham-immunized mice (70% vs. 0%, challenged with 5 x 10(8) CFU H. pylori; 90% vs. 20%, challenged with 5 x 10(6) CFU H. pylori). Significantly higher levels of immunoglobulin G2a (IgG2a) and IFN-gamma were detected in the mice immunized with WCS/CpG than in sham-immunized controls. However, vaccination failed to effectively protect IFN-gamma knockout mice challenged with H. pylori. CONCLUSIONS: CpG-ODN given intranasally is a potent adjuvant for development of a H. pylori vaccine. Th1-type response and IFN-gamma are involved in the protection.  相似文献   

20.
Constitutive expression of gamma-glutamyltranspeptidase (GGT) activity is common to all Helicobacter pylori strains, and is used as a marker for identifying H. pylori isolates. Helicobacter pylori GGT was purified from sonicated extracts of H. pylori strain 85P by anion exchange chromatography. The N-terminal amino acid sequences of two of the generated endo-proteolysed peptides were determined, allowing the cloning and sequencing of the corresponding gene from a genomic H. pylori library. The H. pylori ggt gene consists of a 1681 basepair (bp) open reading frame encoding a protein with a signal sequence and a calculated molecular mass of 61 kDa. Escherichia coli clones harbouring the H. pylori ggt gene exhibited GGT activity at 37 degrees C, in contrast to E. coli host cells (MC1061, HB101), which were GGT negative at 37 degrees C. GGT activity was found to be constitutively expressed by similar genes in Helicobacter felis, Helicobacter canis, Helicobacter bilis, Helicobacter hepaticus and Helicobacter mustelae. Western immunoblots using rabbit antibodies raised against a His-tagged-GGT recombinant protein demonstrated that H. pylori GGT is synthesized in both H. pylori and E. coli as a pro-GGT that is processed into a large and a small subunit. Deletion of a 700 bp fragment within the GGT-encoding gene of a mouse-adapted H. pylori strain (SS1) resulted in mutants that were GGT negative yet grew normally in vitro. These mutants, however, were unable to colonize the gastric mucosa of mice when orally administered alone or together (co-infection) with the parental strain. These results demonstrate that H. pylori GGT activity has an essential role for the establishment of the infection in the mouse model, demonstrating for the first time a physiological role for a bacterial GGT enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号