首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions involved in the denaturation of lysozyme in the presence of urea were examined by thermal transition studies and measurements of preferential interactions of urea with the protein at pH 7.0, where it remains native up to 9.3 M urea, and at pH 2.0, where it undergoes a transition between 2.5 and 5.0 M urea. The destabilization of lysozyme by urea was found to follow the linear dependence on urea molar concentration, M(u), DeltaG(u)(o)=DeltaG(w)(o)-2.1 M(u), over the combined data, where DeltaG(u)(o) and DeltaG(w)(o) are the standard free energy changes of the N right harpoon over left harpoon D reaction in urea and water, respectively. Combination with the measured preferential binding gave the result that the increment of preferential binding, deltaGamma(23)=Gamma(23)(D)-Gamma(23)(N), is also linear in M(u). A temperature dependence study of preferential interactions permitted the evaluation of the transfer enthalpy, DeltaHmacr;(2,tr)(o), and entropy, DeltaSmacr;(2,tr)(o) of lysozyme from water into urea in both the native and denatured states. These values were found to be consistent with the enthalpy and entropy of formation of inter urea hydrogen bonds (Schellman, 1955; Kauzmann, 1959), with estimated values of DeltaHmacr;(2,tr)(o)=ca. -2.5 kcal mol(-1) and DeltaSmacr;(2,tr)(o)=ca. -7.0 e.u. per site. Analysis of the results led to the conclusion that the stabilization of the denatured form was predominantly by preferential binding to newly exposed peptide groups. Combination with the knowledge that stabilizing osmolytes act by preferential exclusion from peptide groups (Liu and Bolen, 1995) has led to the general conclusion that both the stabilization and destabilization of proteins by co-solvents are controlled predominantly by preferential interactions with peptide groups newly exposed on denaturation.  相似文献   

2.
Non-specific binding of proteins and peptides to charged membrane interfaces depends upon the combined contributions of hydrophobic (DeltaG(HPhi)) and electrostatic (DeltaG(ES)) free energies. If these are simply additive, then the observed free energy of binding (DeltaG(obs)) will be given by DeltaG(obs)=DeltaG(HPhi)+DeltaG(ES), where DeltaG(HPhi)=-sigma(NP)A(NP) and DeltaG(ES)=zFphi. In these expressions, A(NP) is the non-polar accessible area, sigma(NP) the non-polar solvation parameter, z the formal peptide valence, F the Faraday constant, and phi the membrane surface potential. But several lines of evidence suggest that hydrophobic and electrostatic binding free energies of proteins at membrane interfaces, such as those associated with cell signaling, are not simply additive. In order to explore this issue systematically, we have determined the interfacial partitioning free energies of variants of indolicidin, a cationic proline-rich antimicrobial peptide. The synthesized variants of the 13 residue peptide covered a wide range of hydrophobic free energies, which allowed us to examine the effect of hydrophobicity on electrostatic binding to membranes formed from mixtures of neutral and anionic lipids. Although DeltaG(obs) was always a linear function of DeltaG(HPhi), the slope depended upon anionic lipid content: the slope was 1.0 for pure, zwitterionic phosphocholine bilayers and 0.3 for pure phosphoglycerol membranes. DeltaG(obs) also varied linearly with surface potential, but the slope was smaller than the expected value, zF. As observed by others, this suggests an effective peptide valence z(eff) that is smaller than the formal valence z. Because of our systematic approach, we were able to establish a useful rule-of-thumb: z(eff) is reduced relative to z by about 20 % for each 3 kcal mol(-1) (1 kcal=4.184 kJ) favorable increase in DeltaG(HPhi). For neutral phosphocholine interfaces, we found that DeltaG(obs) could be predicted with remarkable accuracy using the Wimley-White experiment-based interfacial hydrophobicity scale.  相似文献   

3.
To understand trimethylamine N-oxide (TMAO) attenuation of the denaturating effects of urea or guanidine hydrochloride (GdnHCl), we have determined the apparent transfer free energies (DeltaG(tr)(')) of cyclic dipeptides (CDs) from water to TMAO, urea or GdnHCl, and also the blends of TMAO and denaturants (urea or GdnHCl) at a 1:2 ratio as well as various denaturant concentrations in the presence of 1M TMAO, through the solubility measurements, at 25 degrees C. The CDs investigated in the present study included cyclo(Gly-Gly), cyclo(Ala-Ala) and cyclo(Val-Val). The observed DeltaG(tr)(') values indicate that TMAO can stabilize the CDs while urea or GdnHCl can destabilize the CDs. Furthermore, the DeltaG(tr)(') values of the blends of TMAO with urea or GdnHCl revealed that TMAO strongly counteracted the denaturating effects of urea on CDs in all instances, however, TMAO partially counteracted the perturbing effects of GdnHCl on CDs. TMAO counteraction ability of the deleterious effects of denaturants depended on the denaturant-CDs pair. The experimental results were further used to estimate the transfer free energies (Deltag(tr)(')) of the various functional group contributions from water to TMAO, urea or GdnHCl individually and to the combinations of TMAO and the denaturants in various ratios.  相似文献   

4.
It is known that several naturally occurring substances known as osmolytes increase the conformational stability of proteins. Bolen and co-worker proposed the osmophobic theory, which asserts the osmolyte effect occurs because of an unfavorable interaction of osmolytes mainly with the protein backbone, based on the results on the transfer Gibbs energy of amino acids (Deltag) [Bolen and Baskakov (2001) J. Mol. Biol. 310, 955-963]. In this paper, we report the effect of sarcosine on the conformational stability (DeltaG) of RNase Sa (96 residues and one disulfide bond) and four mutant proteins. The thermal denaturation curves for RNase Sa in sarcosine fitted a two-state model on nonlinear least-squares analysis. All the RNase Sa proteins were stabilized by sarcosine. For example, the increase in stability of the wild-type protein in 4 M sarcosine due to the osmolyte effect (Delta(o)DeltaG) is 3.2 kcal/mol. Mutational analysis of the osmolyte effect indicated that the changed Delta(o)DeltaG values upon mutation (Delta(m)Delta(o)DeltaG), as estimated from the Deltag values, are similar to the experimental values. Structural-based analysis of the osmolyte effect was also performed using model denatured structures: (a) a fully extended model (single chain) with no disulfide bond, (b) two-part, unfolded models (two chains) with a disulfide bond constructed through molecular dynamic (MD) simulation, and (c) a two-part, folded model (two chains). The two-part, unfolded models were expected to be more suitable as denatured structures. The Delta(o)DeltaG values calculated using the two-part, unfolded models were more consistent with experimental values than those calculated using the fully extended and two-part, folded models. This suggests that MD simulation is useful for testing denatured structures. These results indicate that the osmophobic theory can explain the osmolyte effect on protein stability.  相似文献   

5.
Mitogen-activated protein (MAP) kinase-mediated phosphorylation of specific residues in tyrosine hydroxylase leads to an increase in enzyme activity. However, the mechanism whereby phosphorylation affects enzyme turnover is not well understood. We used a combination of fluorescence resonance energy transfer (FRET) measurements and molecular dynamics simulations to explore the conformational free energy landscape of a 10-residue MAP kinase substrate found near the N terminus of the enzyme. This region is believed to be part of an autoregulatory sequence that overlies the active site of the enzyme. FRET was used to measure the effect of phosphorylation on the ensemble of peptide conformations, and molecular dynamics simulations generated free energy profiles for both the unphosphorylated and phosphorylated peptides. We demonstrate how FRET transfer efficiencies can be calculated from molecular dynamics simulations. For both the unphosphorylated and phosphorylated peptides, the calculated FRET efficiencies are in excellent agreement with the experimentally determined values. Moreover, the FRET measurements and molecular simulations suggest that phosphorylation causes the peptide backbone to change direction and fold into a compact structure relative to the unphosphorylated state. These results are consistent with a model of enzyme activation where phosphorylation of the MAP kinase substrate causes the N-terminal region to adopt a compact structure away from the active site. The methods we employ provide a general framework for analyzing the accessible conformational states of peptides and small molecules. Therefore, they are expected to be applicable to a variety of different systems.  相似文献   

6.
The "fusion peptide," a segment of approximately 20 residues of the influenza hemagglutinin (HA), is necessary and sufficient for HA-induced membrane fusion. We used mean-field calculations of the free energy of peptide-membrane association (DeltaG(tot)) to deduce the most probable orientation of the fusion peptide in the membrane. The main contributions to DeltaG(tot) are probably from the electrostatic (DeltaG(el)) and nonpolar (DeltaG(np)) components of the solvation free energy; these were calculated using continuum solvent models. The peptide was described in atomic detail and was modeled as an alpha-helix based on spectroscopic data. The membrane's hydrocarbon region was described as a structureless slab of nonpolar medium embedded in water. All the helix-membrane configurations, which were lower in DeltaG(tot) than the isolated helix in the aqueous phase, were in the same (wide) basin in configurational space. In each, the helix was horizontally adsorbed at the water-bilayer interface with its principal axis parallel to the membrane plane, its hydrophobic face dissolved in the bilayer, and its polar face in the water. The associated DeltaG(tot) value was approximately -8 to -10 kcal/mol (depending on the rotameric state of one of the phenylalanine residues). In contrast, the DeltaG(tot) values associated with experimentally observed oblique orientations were found to be near zero, suggesting they are marginally stable at best. The theoretical model did not take into account the interactions of the polar headgroups with the peptide and peptide-induced membrane deformation effects. Either or both may overcompensate for the DeltaG(tot) difference between the horizontal and oblique orientations.  相似文献   

7.
The free energy of transfer (DeltaG degrees ) from water to lipid bilayers was measured for two amphipathic peptides, the presequence of the mitochondrial peptide rhodanese (MPR) and melittin. Experiments were designed to determine the effects on peptide partitioning of the addition of lipids that produce structural modifications to the bilayer/water interface. In particular, the addition of cholesterol or the cholesterol analog 6-ketocholestanol increases the bilayer area compressibility modulus, indicating that these molecules modify lipid-lipid interactions in the plane of the bilayer. The addition of 6-ketocholestanol or lipids with attached polyethylene glycol chains (PEG-lipids) modify the effective thickness of the interfacial region; 6-ketocholestanol increases the width of hydrophilic headgroup region in the direction of the acyl chains whereas the protruding PEG chains of PEG-lipids increase the structural width of the headgroup region into the surrounding aqueous phase. The incorporation of PEG-lipids with PEG molecular weights of 2000 or 5000 had no appreciable effect on peptide partitioning that could not be accounted for by the presence of surface charge. However, for both MPR and melittin DeltaG degrees decreased linearly with increasing bilayer compressibility modulus, demonstrating the importance of bilayer mechanical properties in the binding of amphipathic peptides.  相似文献   

8.
M Iqbal  P Balaram 《Biochemistry》1981,20(25):7278-7284
270-MHz 1H NMR studies of the 11-21 suzukacillin fragment Boc-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-G) and its analogue Boc-Ala-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-A) have been carried out in CDCl3 and (CD3)2SO. The NH chemical shifts and their temperature coefficients have been measured as a function of peptide concentration in both solvents. It is established that replacement of Gln by Ala is without effect on backbone conformation. Both peptides adopt highly folded 310 helical conformations stabilized by seven intramolecular 4 leads to hydrogen bonds. Nonlinear temperature dependences are demonstrated for free NH groups in the Gln(1) peptide. Aggregation is mediated by intermolecular hydrogen bonds formed by solvent-exposed NH groups. A major role for the Gln side chain in peptide association is suggested by differences in the NMR behavior of the Gln(1) and Ala(1) peptides. For the Gln(1) peptide in CDCl3, the carboxamide side chain carbonyl group forms an intramolecular hydrogen bond to the peptide backbone, while the trans side chain NH shows evidence for intermolecular interactions. In (CD3)2SO, the cis carboxamide NH is involved in intermolecular hydrogen bonding. The possible role of the central Gln residue in stabilizing aggregates of peptide channel formers is discussed, and a model for hexameric association is postulated.  相似文献   

9.
Transfer free energies (ΔGtr) of amino acids from water to aqueous electrolyte solutions have been determined from the solubility measurements, as a function of salt concentration at 298.15 K under atmospheric pressure. The investigated aqueous systems contain amino acids of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) and cyclic glycylglycine (c(GG)) with an electrolyte compound of potassium chloride (KCl), potassium bromide (KBr) or potassium acetate (KAc). The solubilities of glycine and diglycine in aqueous solution decrease with increasing the concentration of salts (salting-out effect), whereas those of triglycine and tetraglycine increase with increasing the concentration of salts (salting-in effect). Furthermore, salting-in effect was found in aqueous c(GG)/KBr system, while salting-out effect was observed in aqueous c(GG)/KCl or c(GG)/KAc system. The experimental results were used to estimate the transfer free energies (Δgtr) of the peptide backbone unit (–CH2CONH–) from water to the aqueous electrolyte solutions. We developed a new trail to determine the activity coefficients (γ) for aqueous and aqueous electrolyte solutions using an activity coefficient model, with which the total contribution of transfer free energy between solute and the solvent was calculated. We compared the difference between neglecting and using the activity coefficients term in predicting ΔGtr. Since the transfer free energy contribution is negative, interactions between the ionic salts and the peptide backbone unit of zwitterionic glycine peptides are favorable and thus the ionic salts destabilize these amino acids. It was also found that KBr stabilizes c(GG), whereas KCl and KAc destabilize c(GG). These results provide evidence for the existence of interactions between the amide unit and ionic salts, in aqueous solution, which may be of importance in maintaining protein structure as well as in protein–solute and protein–solvent interactions.  相似文献   

10.
Amide-to-ester backbone mutagenesis enables a specific backbone-backbone hydrogen bond (H-bond) in a protein to be eliminated in order to quantify its energetic contribution to protein folding. To extract a H-bonding free energy from an amide-to-ester perturbation free energy (DeltaG (folding,wt) - DeltaG (folding,mut)), it is necessary to correct for the putative introduction of a lone pair-lone pair electrostatic repulsion, as well as for the transfer free energy differences that may arise between the all amide sequence and the predominantly amide sequence harboring an ester bond. Mutation of the 9-10 amide bond within the V9F variant of the predominantly helical villin headpiece subdomain (HP35) to an ester or an E-olefin backbone bond results in a less stable but defined wild-type fold, an attribute required for this study. Comparing the folding free energies of the ester and E-olefin mutants, with correction for the desolvation free energy differences (ester and E-olefin) and the loss of an n-to-pi* interaction (E-olefin), yields an experimentally based estimate of +0.4 kcal/mol for the O-O repulsion energy in an alpha-helical context, analogous to our previous experimentally based estimate of the O-O repulsion free energy in the context of a beta-sheet. The small O-O repulsion energy indicates that amide-to-ester perturbation free energies can largely be attributed to the deletion of the backbone H-bonds after correction for desolvation differences. Quantitative evaluation of H-bonding in an alpha-helix should now be possible, an important step toward deciphering the balance of forces that enable spontaneous protein folding.  相似文献   

11.
Powell KD  Fitzgerald MC 《Biochemistry》2003,42(17):4962-4970
A new H/D exchange- and MALDI mass spectrometry-based technique, termed SUPREX, was used to characterize the thermodynamic properties of a series of model protein-peptide complexes of the Abelson tyrosine kinase SH3 domain (abl-SH3) and the S-Protein (S-Pro). The SUPREX technique was employed to evaluate the folding free energies (DeltaG(f) values) of each model protein in the absence and in the presence of a series of different peptide ligands. Ultimately, these SUPREX-derived DeltaG(f) values were used to calculate dissociation constants (K(d) values) for each of the nine protein-peptide complexes in this study. As part of this work, we describe a new data collection and analysis method that allows the accurate and precise determination of protein folding m-values in the SUPREX experiment. The m-values that we determined for the abl-SH3 domain and the S-Pro system were in good agreement with those determined by conventional techniques. Our results also indicate that the SUPREX-derived K(d) values for the protein-peptide complexes in this work were in reasonably good agreement with those determined by conventional techniques.  相似文献   

12.
Horng JC  Moroz V  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2002,41(45):13360-13369
A set of peptides derived from the N-terminal domain of the ribosomal protein L9 (NTL9) have been characterized in an effort to define the minimum unit of this domain required to fold and to provide model peptides for the analysis of electrostatic interactions in the unfolded state. NTL9 is a 56-residue alpha-beta protein with a beta1-loop-beta2-alpha1-beta3-alpha2 topology. The beta-sheet together with the first helix comprise a simple example of a common supersecondary motif called the split beta-alpha-beta fold. Peptides corresponding to the beta1-loop-beta2 unit are unstructured even when constrained by an introduced disulfide. The pK(a)s of Asp-8 and Glu-17 in these peptides are slightly lower than the values found for shorter peptides but are considerably higher than the values in NTL9. A 34-residue peptide, which represents the beta1-loop-beta2-alpha1 portion of NTL9, is also unstructured. In contrast, a 39-residue peptide corresponding to the entire split beta-alpha-beta motif is folded and monomeric as judged by near- and far-UV CD, two-dimensional NMR, ANS binding experiments, pK(a) measurements, and analytical ultracentrifugation. The fold is very similar to the structure of this region in the intact protein. Thermal and urea unfolding experiments show that it is cooperatively folded with a DeltaG degrees of unfolding of 1.8-2.0 kcal/mol and a T(m) of 58 degrees C. This peptide represents the first demonstration of the independent folding of an isolated split beta-alpha-beta motif, and is one of only four naturally occurring sequences of fewer than 40 residues that has been shown to fold cooperatively in the absence of disulfides or ligand binding.  相似文献   

13.
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  相似文献   

14.
Partial molar heat capacities (CP2 degrees) and volumes (V2 degrees) for some amino acids and peptides were measured in 1 M aqueous calcium chloride solutions at 298.15 degrees K using a Picker flow microcalorimeter and an oscillating-tube digital density meter. Using the data for these amino acids and peptides in water, the corresponding partial molar heat capacities of transfer (CP2,tr degree) and volumes (V2,tr degree) from water to 1 M aqueous calcium chloride were deduced. These thermodynamic parameters are significantly positive, indicating that strong interactions occur between the ions of calcium chloride and the charged centres of these amino acids and peptides. A comparison has been made with a similar transfer of these compounds to sodium chloride solutions. The thermodynamic parameters of the transfer of peptide group (-CONH) are much more positive in calcium chloride than in sodium chloride solutions. The implication of this result for the ability of calcium chloride to act as a stronger destabilizer of protein conformation is discussed.  相似文献   

15.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

16.
X-linked lymphoproliferative disease is caused by mutations in the protein SAP, which consists almost entirely of a single SH2 domain. SAP interacts with the Tyr281 site of the T<-->B cell signaling protein SLAM via its SH2 domain. Interestingly, binding is not dependent on phosphorylation but does involve interactions with residues N-terminal to the Tyr. We have used 15N and 2H NMR relaxation experiments to investigate the motional properties of the SAP SH2 domain backbone amides and side-chain methyl groups in the free protein and complexes with phosphorylated and non-phosphorylated peptides derived from the Tyr281 site of SLAM. The most mobile methyl groups are in side-chains with large RMSD values between the three crystal structures of SAP, suggesting that fast time-scale dynamics in side-chains is associated with conformational plasticity. The backbone amides of two residues which interact with the C-terminal part of the peptides experience fast time-scale motions in the free SH2 domain that are quenched upon binding of either the phosphorylated or non-phosphorylated peptide. Of most importance, the mobility of methyl groups in and around the binding site for residues in the N-terminus of the peptide is significantly restricted in the complexes, underscoring the dominance of this interaction with SAP and demonstrating a correlation between changes in rapid side-chain motion upon binding with local binding energy.  相似文献   

17.
The membrane-lytic peptide melittin has previously been shown to form pores in lipid bilayers that have been described in terms of two different structural models. In the "barrel stave" model the bilayer remains more or less flat, with the peptides penetrating across the bilayer hydrocarbon region and aggregating to form a pore, whereas in the "toroidal pore" melittin induces defects in the bilayer such that the bilayer bends sharply inward to form a pore lined by both peptides and lipid headgroups. Here we test these models by measuring both the free energy of melittin transfer (DeltaG degrees ) and melittin-induced leakage as a function of bilayer elastic (material) properties that determine the energetics of bilayer bending, including the area compressibility modulus (K(a)), bilayer bending modulus (k(c)), and monolayer spontaneous curvature (R(o)). The addition of cholesterol to phosphatidylcholine (PC) bilayers, which increases K(a) and k(c), decreases both DeltaG degrees and the melittin-induced vesicle leakage. In contrast, the addition to PC bilayers of molecules with either positive R(o), such as lysoPC, or negative R(o), such as dioleoylglycerol, has little effect on DeltaG degrees , but produces large changes in melittin-induced leakage, from 86% for 8:2 PC/lysoPC to 18% for 8:2 PC/dioleoylglycerol. We observe linear relationships between melittin-induced leakage and both K(a) and 1/R(o)(2). However, in contrast to what would be expected for a barrel stave model, there is no correlation between observed leakage and bilayer hydrocarbon thickness. All of these results demonstrate the importance of bilayer material properties on melittin-induced leakage and indicate that the melittin-induced pores are defects in the bilayer lined in part by lipid molecules.  相似文献   

18.
Avbelj F  Baldwin RL 《Proteins》2006,63(2):283-289
The principle of group additivity is a standard feature of analyses of the energetics of protein folding, but it is known that it may not always be valid for the polar peptide group. The neighboring residue effect shows that group additivity is not strictly valid for a heteropeptide. We show here that group additivity fails seriously for peptide groups close to either peptide end, even for a homopeptide that has blocked end groups with no formal charges involved. The failure of group additivity is caused by the electrostatic character of the solvation of peptide polar groups and is illustrated with values of the electrostatic solvation free energy (ESF) calculated by DelPhi. Solvation free energies and enthalpies are known experimentally for monoamides and are often used to model the solvation of peptide groups, but ESF results show that monoamide values are very different from those of peptide groups. A main cause of the difference is that peptide solvation depends on the dipole-dipole interactions made between adjacent peptide groups, which vary with peptide conformation. Ligands that interact with the peptide backbone by an electrostatic mechanism could show a similar peptide end effect, and hydrogen exchange results from the literature confirm that exchange rates are position-dependent close to peptide ends.  相似文献   

19.
No consensus has been reached on the proper time to add stable-isotope labeled (SIL) peptides in protein cleavage isotope dilution mass spectrometry workflows. While quantifying 24 monolignol pathway enzymes in the xylem tissue of Populus trichocarpa, we compared the protein concentrations obtained when adding the SIL standard peptides concurrently with the enzyme or after quenching of the digestion (i.e. postdigestion) and observed discrepancies for nearly all tryptic peptides investigated. In some cases, greater than 30-fold differences were observed. To explain these differences and potentially correct for them, we developed a mathematical model based on pseudo-first-order kinetics to account for the dynamic production and decay (e.g. degradation and precipitation) of the native peptide targets in conjunction with the decay of the SIL peptide standards. A time course study of the digests confirmed the results predicted by the proposed model and revealed that the discrepancy between concurrent and postdigestion introduction of the SIL standards was related to differential decay experienced by the SIL peptide and the native peptide in each method. Given these results, we propose concurrent introduction of the SIL peptide is most appropriate, though not free from bias. Mathematical modeling of this method reveals that overestimation of protein quantities would still result when rapid peptide decay occurs and that this bias would be further exaggerated by slow proteolysis. We derive a simple equation to estimate the bias for each peptide based on the relative rates of production and decay. According to this equation, nearly half of the peptides evaluated here were estimated to have quantitative errors greater than 10% and in a few cases over 100%. We conclude that the instability of peptides can often significantly bias the protein quantities measured in protein cleavage isotope dilution mass spectrometry-based assays and suggest peptide stability be made a priority when selecting peptides to use for quantification.  相似文献   

20.
A wide range of regulatory processes in the cell are mediated by flexible peptides that fold upon binding to globular proteins. Computational efforts to model these interactions are hindered by the large number of rotatable bonds in flexible peptides relative to typical ligand molecules, and the fact that different peptides assume different backbone conformations within the same binding site. In this study, we present Rosetta FlexPepDock, a novel tool for refining coarse peptide–protein models that allows significant changes in both peptide backbone and side chains. We obtain high resolution models, often of sub‐angstrom backbone quality, over an extensive and general benchmark that is based on a large nonredundant dataset of 89 peptide–protein interactions. Importantly, side chains of known binding motifs are modeled particularly well, typically with atomic accuracy. In addition, our protocol has improved modeling quality for the important application of cross docking to PDZ domains. We anticipate that the ability to create high resolution models for a wide range of peptide–protein complexes will have significant impact on structure‐based functional characterization, controlled manipulation of peptide interactions, and on peptide‐based drug design. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号