首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eight men exercised at 66% of their maximal isometric force to fatigue after prior decrease in the glycogen store in one leg (low-glycogen, LG). The exercise was repeated with the contralateral leg (control) at the same relative intensity and for the same duration. Muscle (quadriceps femoris) glycogen content decreased in the LG leg from 199 +/- 17 (mean +/- S.E.M.) to 163 +/- 16 mmol of glucosyl units/kg dry wt. (P less than 0.05), and in the control leg from 311 +/- 23 to 270 +/- 18 mmol/kg (P less than 0.05). The decrease in glycogen corresponded to a similar accumulation of glycolytic intermediates. Muscle glucose increased in the LG leg during the contraction, from 1.8 +/- 0.1 to 4.3 +/- 0.6 mmol/kg dry wt. (P less than 0.01), whereas no significant increase occurred in the control leg (P greater than 0.05). It is concluded that during exercise glucose is formed from glycogen through the debranching enzyme when muscle glycogen is decreased to values below about 200 mmol/kg dry wt.  相似文献   

3.
The relationships between muscle glycogenolysis, glycolysis, and H+ concentration were examined in eight subjects performing three 30-s bouts of maximal isokinetic cycling at 100 rpm. Bouts were separated by 4 min of rest, and muscle biopsies were obtained before and after bouts 2 and 3. Total work decreased from 20.5 +/- 0.7 kJ in bout 1 to 16.1 +/- 0.7 and 13.2 +/- 0.6 kJ in bouts 2 and 3. Glycogenolysis was 47.2 and 15.1 mmol glucosyl U/kg dry muscle during bouts 2 and 3, respectively. Lower accumulations of pathway intermediates in bout 3 confirmed a reduced glycolytic flux. In bout 3, the work done represented 82% of the work in bout 2, whereas glycogenolysis was only 32% of that in bout 2. Decreases in ATP and phosphocreatine contents were similar in the two bouts. Muscle [H+] increased from 195 +/- 12 to 274 +/- 19 nmol/l during bout 2, recovered to 226 +/- 8 nmol/l before bout 3, and increased to 315 +/- 24 nmol/l during bout 3. Muscle [H+] could not be predicted from lactate content, suggesting that ion fluxes are important in [H+] regulation in this exercise model. Low glycogenolysis in bout 3 may be due to an inhibitory effect of increased [H+] on glycogen phosphorylase activity. Alternately, reduced Ca2+ activation of fast-twitch fibers (including a possible H+ effect) may contribute to the low overall glycogenolysis. Total work in bout 3 is maintained by a greater reliance on slow-twitch fibers and oxidative metabolism.  相似文献   

4.
We examined the hypothesis that increasing the rate of branched-chain amino acid (BCAA) oxidation, during conditions of low glycogen availability, reduces the level of muscle tricarboxylic acid cycle intermediates (TCAI) by placing a carbon "drain" on the cycle at the level of 2-oxoglutarate. Six men cycled at approximately 70% of maximal oxygen uptake for 15 min under two conditions: 1) low preexercise muscle glycogen (placebo) and 2) low glycogen combined with BCAA ingestion. We have previously shown that BCAA ingestion increased the activity of branched-chain oxoacid dehydrogenase, the rate-limiting enzyme for BCAA oxidation in muscle, compared with low glycogen alone [M. L. Jackman, M. J. Gibala, E. Hultman, and T. E. Graham. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E233-E238, 1997]. Muscle glycogen concentration was 185 +/- 22 and 206 +/- 22 mmol/kg dry wt at rest for the placebo and BCAA-supplemented trials, respectively, and decreased to 109 +/- 18 and 96 +/- 10 mmol/kg dry wt after exercise. The net increase in the total concentration of six measured TCAI ( approximately 95% of TCAI pool) during exercise was not different between trials (3.97 +/- 0. 34 vs. 3.88 +/- 0.34 mmol/kg dry wt for the placebo and BCAA trials, respectively). Muscle 2-oxoglutarate concentration decreased from approximately 0.05 at rest to approximately 0.03 mmol/kg dry wt after exercise in both trials. The magnitude of TCAI pool expansion in both trials was similar to that seen previously in subjects who performed an identical exercise bout after a normal mixed diet [M. J. Gibala, M. A. Tarnopolsky, and T. E. Graham. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E239-E244, 1997]. These data suggest that increasing the rate of BCAA oxidation has no measurable effect on muscle TCAI during exercise with low glycogen in humans. Moreover, it appears that low resting glycogen per se does not impair the increase in TCAI during moderate exercise.  相似文献   

5.
Prolonged moderate-intensity exercise is characterized by a progressive reduction in carbohydrate oxidation and concomitant increase in fat oxidation. Pyruvate dehydrogenase (PDH) controls the entry of pyruvate into oxidative pathways and is a rate-limiting enzyme for carbohydrate metabolism. PDH is controlled by the activities of a kinase (PDK, inhibitory) and phosphatase (stimulatory). To test the hypothesis that increased PDK activity was associated with decreased PDH activity and carbohydrate oxidation during an acute exercise bout, seven recreationally active men completed 4 h of cycle exercise at 55% peak oxygen consumption. Muscle samples were obtained before and at 10 min and 4 h of exercise for the measurement of PDH activity and the extraction of intact mitochondria for the measurements of PDK activity and PDK-2 and PDK-4 protein expression. Carbohydrate oxidation was reduced (P < 0.05) with exercise duration. Muscle glycogen content was lower (P < or = 0.05) at 4 h compared with rest and there was no change in muscle pyruvate content from 10 to 240 min during exercise (10 min: 0.28 +/- 0.05; 240 min: 0.35 +/- 0.09 mmol/kg dry muscle). PDH activity increased (P < 0.05) above resting values at 10 min (2.86 +/- 0.26 mmol.min(-1).kg wet muscle(-1)), but was lower than 10 min after 4 h (2.23 +/- 0.24 mmol.min(-1).kg wet muscle(-1)) of exercise. PDK-2 and PDK-4 protein expression was not different from rest at 10 min and 4 h of exercise. PDK activity at rest averaged 0.081 +/- 0.016 min(-1), was similar at 10 min, and increased (P < 0.05) to 0.189 +/- 0.013 min(-1) at 4 h. Although reduced glycolytic flux may have played a role in decreasing carbohydrate oxidation, the results suggest that increased PDK activity contributed to the reduction in PDH activity and carbohydrate oxidation late in prolonged exercise. The increased PDK activity was independent of changes in intra-mitochondrial effectors, and PDK-2 and PDK-4 protein content, suggesting that it was caused by a change in the specific activity of the existing kinases.  相似文献   

6.
The purpose of this investigation was to determine whether endurance exercise training increases the ability of human skeletal muscle to accumulate glycogen after exercise. Subjects (4 women and 2 men, 31 +/- 8 yr old) performed high-intensity stationary cycling 3 days/wk and continuous running 3 days/wk for 10 wk. Muscle glycogen concentration was measured after a glycogen-depleting exercise bout before and after endurance training. Muscle glycogen accumulation rate from 15 min to 6 h after exercise was twofold higher (P < 0.05) in the trained than in the untrained state: 10.5 +/- 0.2 and 4.5 +/- 1.3 mmol. kg wet wt(-1). h(-1), respectively. Muscle glycogen concentration was higher (P < 0.05) in the trained than in the untrained state at 15 min, 6 h, and 48 h after exercise. Muscle GLUT-4 content after exercise was twofold higher (P < 0.05) in the trained than in the untrained state (10.7 +/- 1.2 and 4.7 +/- 0.7 optical density units, respectively) and was correlated with muscle glycogen concentration 6 h after exercise (r = 0.64, P < 0.05). Total glycogen synthase activity and the percentage of glycogen synthase I were not significantly different before and after training at 15 min, 6 h, and 48 h after exercise. We conclude that endurance exercise training enhances the capacity of human skeletal muscle to accumulate glycogen after glycogen-depleting exercise.  相似文献   

7.
The purpose of this investigation was to determine the effects of postexercise eucaloric carbohydrate-protein feedings on muscle glycogen restoration after an exhaustive cycle ergometer exercise bout. Seven male collegiate cyclists [age = 25.6 +/- 1.3 yr, height = 180.9 +/- 3.2 cm, wt = 75.4 +/- 4.0 kg, peak oxygen uptake (VO(2 peak)) = 4.20 +/- 0.2 l/min] performed three trials, each separated by 1 wk: 1) 100% alpha-D-glucose [carbohydrate (CHO)], 2) 70% carbohydrate-20% protein (PRO)-10% fat, and 3) 86% carbohydrate-14% amino acid (AA). All feedings were eucaloric, based on 1.0 g. kg body wt(-1). h(-1) of CHO, and administered every 30 min during a 4-h muscle glycogen restoration period in an 18% wt/vol solution. Muscle biopsies were obtained immediately and 4 h after exercise. Blood samples were drawn immediately after the exercise bout and every 0.5 h for 4 h during the restoration period. Increases in muscle glycogen concentrations for the three feedings (CHO, CHO-PRO, CHO-AA) were 118 mmol/kg dry wt; however, no differences among the feedings were apparent. The serum glucose and insulin responses did not differ throughout the restoration period among the three feedings. These results suggest that muscle glycogen restoration does not appear to be enhanced with the addition of proteins or amino acids to an eucaloric CHO feeding after exhaustive cycle exercise.  相似文献   

8.
The purpose of the present study was to examine aerobic and muscle anaerobic energy production during supramaximal repeated exercise. Eight subjects performed three 2-min bouts of cycling (EX1-EX3) at an intensity corresponding to about 125 % of VO2 max separated by 15 min of rest. Ventilatory variables were measured breath by breath during the exercise and a muscle biopsy was taken before and after each exercise bout. Blood samples were collected before and after each cycling period and during the recovery periods. Total work in the first 2 min bout of cycling, EX1, [46.3 +/- 2.1 KJ] was greater than in the second, EX2, (p < 0.01) and in the third, EX3, (p < 0.05). The ATP utilization [4.0 +/- 1.4 mmol x (kg dry weight)(-1), EX1] during the three exercise bouts was the same. The decrement in muscle phosphocreatine (PCr) [46.8 +/- 8.5 mmol x (kg dry weight)(-1), EX1] was also similar for the three exercise bouts. Muscle lactate accumulation was greater (p < 0.05) during EX1 compared to EX2 and EX3. The total oxygen consumption was the same for the three exercise bouts, but when it is corrected for the total work performed, oxygen uptake during EX2 (153 +/- 9 ml x KJ(-1)) and EX3 (150 +/- 9 ml x KJ(-1)) was higher (p < 0.01 and p < 0.05, respectively) than during EX1 (139 +/- 8 ml x KJ(-1)). The present data suggest that oxidative metabolism does not compensate for the reduction of anaerobic glycolysis during repeated fatiguing exercise.  相似文献   

9.
This study investigated whether increased provision of oxidative substrate would reduce the reliance on nonoxidative ATP production and/or increase power output during maximal sprint exercise. The provision of oxidative substrate was increased at the onset of exercise by the infusion of acetate (AC; increased resting acetylcarnitine) or dichloroacetate [DCA; increased acetylcarnitine and greater activation of pyruvate dehydrogeanse (PDH-a)]. Subjects performed 10 s of maximal cycling on an isokinetic ergometer on three occasions after either DCA, AC, or saline (Con) infusion. Resting PDH-a with DCA was increased significantly over AC and Con trials (3.58 +/- 0.4 vs. 0.52 +/- 0.1 and 0.74 +/- 0.1 mmol. kg wet muscle(-1). min(-1)). DCA and AC significantly increased resting acetyl-CoA (35.2 +/- 4.4 and 22.7 +/- 2.9 vs. 10.2 +/- 1.3 micromol/kg dry muscle) and acetylcarnitine (12.9 +/- 1.4 and 11.0 +/- 1.0 vs. 3.3 +/- 0.6 mmol/kg dry muscle) over Con. Resting contents of phosphocreatine, lactate, ATP, and glycolytic intermediates were not different among trials. Average power output and total work done were not different among the three 10-s sprint trials. Postexercise, PDH-a in AC and Con trials had increased significantly but was still significantly lower than in DCA trial. Acetyl-CoA did not increase in any trial, whereas acetylcarnitine increased significantly only in DCA. Exercise caused identical decreases in ATP and phosphocreatine and identical increases in lactate, pyruvate, and glycolytic intermediates in all trials. These data suggest that there is an inability to utilize extra oxidative substrate (from either stored acetylcarnitine or increased PDH-a) during exercise at this intensity, possibly because of O(2) and/or metabolic limitations.  相似文献   

10.
11.
Human muscle metabolism during sprint running   总被引:8,自引:0,他引:8  
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.  相似文献   

12.
We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-fat (Fat-CHO; 62% fat, 21% carbohydrate) and 6 a high-carbohydrate diet (CHO; 20% fat, 65% carbohydrate) for 7 wk, and thereafter both groups consumed the carbohydrate diet for an eighth week. Training was performed throughout. After 8 wk, during 60 min of exercise (71 +/- 1% pretraining maximal oxygen uptake) average leg glucose uptake (1.00 +/- 0.07 vs. 1.55 +/- 0.21 mmol/min) was lower (P < 0.05) in Fat-CHO than in CHO. The rate of muscle glycogen breakdown was similar (4.4 +/- 0.5 vs. 4.2 +/- 0.7 mmol. min(-1). kg dry wt(-1)) despite a significantly higher preexercise glycogen concentration (872 +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels, compared with when the carbohydrate diet is consumed throughout training.  相似文献   

13.
The effects of an exercise-induced muscle glycogen reduction and an elevated muscle glycogen concentration on glucose tolerance and the insulin response to an oral glucose tolerance test (GTT) were examined. GTTs were administered to seven male subjects after 3 days on a mixed diet (C), after exhaustive exercise and 1 day on a high-fat protein diet (L-FP), after exhaustive exercise and 1 day on a mixed diet (L-M), and after exhaustive exercise and 3 days on a high-carbohydrate diet (H-CHO). The L-M treatment resulted in a significant reduction in muscle glycogen (C, 79.6 +/- 4.2 mmol/kg wet wt vs. L-M, 53.9 +/- 1.2 mmol/kg wet wt) and a 31.7% reduction in the insulin-glucose (IG) index, a measure of insulin sensitivity in vivo. Muscle glycogen was also significantly reduced by the L-FP treatment (49.1 +/- 2.4 mmol/kg wet wt), but there was no change in the IG index. Preventing a decrease in the IG index during the L-FP treatment may have been a result of elevated free fatty acids (67%) and ketones (552%) prior to the GTT. Muscle glycogen was significantly increased by the H-CHO treatment (124.8 +/- 11.1 mmol/kg wet wt); however, the IG index was not different from that of the C treatment. The results suggest that an exercise-induced reduction in muscle glycogen can improve insulin sensitivity in vivo but that this effect is diet dependent.  相似文献   

14.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

15.
To define the metabolic response to maximal exercise in the thoroughbred horse under field conditions, muscle biopsies and venous blood samples were taken from five horses after a single 800-m gallop and from four horses after a single 2,000-m gallop. Muscle and blood samples were also collected during 60 min of recovery. After exercise muscle ATP contents were decreased by 30 +/- 7 (SD) and 47 +/- 3% after the 800- and 2,000-m gallops, respectively. As indicators of purine catabolism, ammonia and uric acid increased in plasma, the accumulation being greater after the 2,000-m gallop. Blood ammonia peaked immediately after exercise and uric acid after 40-60 min of recovery. Muscle glycogen utilization over the 800- and 2,000-m gallops averaged 2.68 +/- 0.90 and 1.06 +/- 0.12 mmol glucosyl units.kg dry muscle-1.s-1, respectively, and the total used amounted to 27.3 +/- 6.6 and 32.5 +/- 8.8% of the initial store. Muscle lactate accumulation averaged 123.5 +/- 49.7 and 167.3 +/- 20.7 mmol/kg dry muscle, respectively, and declined during recovery with half times of 22.9 +/- 4.2 and 18.9 +/- 6.6 min. Blood lactate peaked 5-10 min after exercise. Exercise resulted in only a small increase in muscle glycerol content, but this continued to rise during recovery reaching 9-12 mmol/kg dry muscle after 20 min. During this time the increase in muscle glycerol content exactly matched the decline in glycerol 3-phosphate.  相似文献   

16.
This study examined the relationship between preexercise muscle glycogen content and glycogen utilization in two physiological pools, pro- (PG) and macroglycogen (MG). Male subjects (n = 6) completed an exercise and dietary protocol before the experiment that resulted in one leg with high glycogen (HL) and one with low glycogen (LL). Preexercise PG levels were 312 +/- 29 and 208 +/- 31 glucosyl units/kg dry wt (dw) (P < or = 0.05) in the HL and LL, respectively, and the corresponding values for MG were 125 +/- 37 and 89 +/- 43 mmol glucosyl units/kg dw (P < or = 0.05). Subjects then performed two 90-s exercise bouts at 130% maximal oxygen uptake separated by a 10-min rest period. Biopsies were obtained at rest and after each exercise bout. Preexercise glycogen concentration was correlated to net glycogenolysis for both PG and MG for bout 1 and bouts 1 and 2 (r < or = 0.60). In bout 1, there was no difference in the rate of PG or MG catabolism between HL and LL despite a 26% increase (P < or = 0.05) in glycogen phosphorylase transformation (phos a %) in the HL. In the second bout, more PG was catabolized in the HL vs. LL (38 +/- 9 vs. 9 +/- 6 mmol glucosyl units. kg dw(-1). min(-1)) (P < or = 0.05) with no difference between legs in phos a %. phos a % was increased in HL vs. LL but does not necessarily increase glycogenolysis in either PG or MG. Despite both legs performing the same exercise and having identical metabolic demands, the HL catabolized 2.3 (P < or = 0.05) times more PG and 1.5 (P < or = 0.05) times more MG vs. LL in bouts 1 and 2, indicating that preexercise glycogen concentration is a regulator of glycogenolysis.  相似文献   

17.
Six men werestudied during four 30-s "all-out" exercise bouts on anair-braked cycle ergometer. The first three exercise bouts wereseparated by 4 min of passive recovery; after the third bout, subjectsrested for 4 min, exercised for 30 min at 30-35% peakO2 consumption, and rested for afurther 60 min before completing the fourth exercise bout. Peak powerand total work were reduced (P < 0.05) during bout 3 [765 ± 60 (SE) W; 15.8 ± 1.0 kJ] compared withbout 1 (1,168 ± 55 W, 23.8 ± 1.2 kJ), but no difference in exercise performance was observed betweenbouts 1 and4 (1,094 ± 64 W, 23.2 ± 1.4 kJ). Before bout 3, muscle ATP,creatine phosphate (CP), glycogen, pH, and sarcoplasmic reticulum (SR)Ca2+ uptake were reduced, whilemuscle lactate and inosine 5'-monophosphate wereincreased. Muscle ATP and glycogen before bout4 remained lower than values beforebout 1 (P < 0.05), but there were no differences in muscle inosine 5'-monophosphate, lactate, pH, and SR Ca2+ uptake. Muscle CP levelsbefore bout 4 had increased aboveresting levels. Consistent with the decline in muscle ATP wereincreases in hypoxanthine and inosine before bouts3 and 4. The decline in exercise performance does not appear to be related to a reduction inmuscle glycogen. Instead, it may be caused by reduced CP availability, increased H+ concentration,impairment in SR function, or some other fatigue-inducing agent.

  相似文献   

18.
Percutaneous muscle biopsies were obtained from the vastus lateralis of physically active men (n = 12) 1) at rest, 2) immediately after an exercise bout consisting of 30 maximal voluntary knee extensions of constant angular velocity (3.14 rad/s), and 3) 60 s after termination of exercise. Creatine phosphate (CP) content was analyzed in pools of freeze-dried fast-twitch (FT) and slow-twitch (ST) muscle fiber fragments, and ATP, CP, creatine, and lactate content were assayed in mixed pools of FT and ST fibers. CP content at rest was 82.7 +/- 11.2 and 73.1 +/- 9.5 (SD) mmol/kg dry wt in FT and ST fibers (P less than 0.05). After exercise the corresponding values were 25.4 +/- 19.8 and 29.7 +/- 14.4 mmol/kg dry wt. After 60 s of recovery CP increased (P less than 0.01) to 41.3 +/- 12.6 and 49.6 +/- 11.7 mmol/kg dry wt in FT and ST fibers, respectively. CP content after recovery, relative to initial level, was higher in ST compared with FT fibers (P less than 0.05). ATP content decreased (P less than 0.05) and lactate content rose to 67.4 +/- 28.3 mmol/kg dry wt (P less than 0.001) in response to exercise. It is concluded that basal CP content is higher in FT fibers than in ST fibers. CP content also appears to be higher in ST fibers after a 60-s recovery period after maximal short-term exercise. These data are consistent with the different metabolic profiles of FT and ST fibers.  相似文献   

19.
This is the first study to examine the effects of endurance training on the activation state of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in human skeletal muscle during exercise. We hypothesized that 7 wk of endurance training (Tr) would result in a posttransformationally regulated decrease in flux through Phos and an attenuated activation of PDH during exercise due to alterations in key allosteric modulators of these important enzymes. Eight healthy men (22 +/- 1 yr) cycled to exhaustion at the same absolute workload (206 +/- 5 W; approximately 80% of initial maximal oxygen uptake) before and after Tr. Muscle biopsies (vastus lateralis) were obtained at rest and after 5 and 15 min of exercise. Fifteen minutes of exercise post-Tr resulted in an attenuated activation of PDH (pre-Tr: 3.75 +/- 0.48 vs. post-Tr: 2.65 +/- 0.38 mmol.min(-1).kg wet wt(-1)), possibly due in part to lower pyruvate content (pre-Tr: 0.94 +/- 0.14 vs. post-Tr: 0.46 +/- 0.03 mmol/kg dry wt). The decreased pyruvate availability during exercise post-Tr may be due to a decreased muscle glycogenolytic rate (pre-Tr: 13.22 +/- 1.01 vs. post-Tr: 7.36 +/- 1.26 mmol.min(-1).kg dry wt(-1)). Decreased glycogenolysis was likely mediated, in part, by posttransformational regulation of Phos, as evidenced by smaller net increases in calculated muscle free ADP (pre-Tr: 111 +/- 16 vs. post-Tr: 84 +/- 10 micromol/kg dry wt) and P(i) (pre-Tr: 57.1 +/- 7.9 vs. post-Tr: 28.6 +/- 5.6 mmol/kg dry wt). We have demonstrated for the first time that several signals act to coordinately regulate Phos and PDH, and thus carbohydrate metabolism, in human skeletal muscle after 7 wk of endurance training.  相似文献   

20.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号