首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.  相似文献   

2.
Gao Z  Ruden DM  Lu X 《Current biology : CB》2003,13(24):2175-2178
Sperm of both mammals and invertebrates move toward specific sites in the female reproductive tract. However, molecular mechanisms for sperm to follow directional cues are unknown. Here, we report genetic analysis of Drosophila Pkd2 at 33E3 (Pkd2, CG6504), which encodes a Ca(2+)-activated, nonselective cation channel homologous to the human Pkd2 autosomal dominant polycystic kidney disease (ADPKD) gene. The PKD2 family of genes has been implicated in sensory responses through protein localization on primary cilia of epithelia and neurons. In renal tubules, cilium-associated PKD2 appears to mediate Ca(2+) influx in response to fluid flow, and the loss of fluid sensation probably contributes to cyst growth and ADPKD. Sperm tails or flagella are specialized cilia essential for movement. Drosophila Pkd2 is abundantly associated with the tail and the acrosome-containing head region of mature sperm. Targeted disruption of Pkd2 results in male sterility without affecting spermatogenesis. The mutant sperm are motile but fail to swim into the storage organs in the female. Rare mutant sperm that reach the storage organs are able to fertilize the egg and produce viable progeny. Our data demonstrate that the Drosophila PKD2 cation channel operates in sperm for directional movement inside the female reproductive tract.  相似文献   

3.
The waveform of the flagellum of the sea urchin spermatozoon is mainly planar, but its 3D-properties were evoked for dynamic reasons and described as helical. In 1975, the apparent twisting pattern of the sea urchin axoneme was described [Gibbons I. 1975. The molecular basis of flagellar motility in sea urchin spermatozoa. In: Inoué S, Stephens R, editors. Molecular and cellular movement. New York: Raven Press, p. 207-232.] and was considered to be one of the main elements involved in axonemal behaviour. Recently, planar, quasi-planar, and helical waveforms were observed when the flagellum of sea urchin sperm cells was submitted to an increase in viscosity. The quasi-planar conformation seemed to be due to the alternating torsion of the inter-bend segments [Woolley D, Vernon G. 2001. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204:1333-1345]. These three waveforms, which are due to a change in axonemal activity, are possibly used by the sperm cells to adapt their movement to variations in the physico-chemical characteristics of the medium (seawater) in which the cells normally swim. We constructed a simple model to describe qualitatively the central shear (between the axonemal doublets and the central pair) and the tangential shear (between the doublets themselves). In this model, the 3D-bending is resolved into components in two perpendicular planes and each of the nine planes of inter-doublet interaction defines a potential bending plane that is independently regulated. These shears were calculated for the three waveforms and their inter-conversion. This allowed us to propose that axoneme is resolved in successive modules delineated by abscissas where the sliding is always nil. We discuss these data concerning the axonemal machinery, and especially the alternating activity of opposite sides of (two) neutral surface(s) that seem(s) to be responsible for this inter-conversion, and for the possible twist of the axoneme during the beating.  相似文献   

4.
We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave.  相似文献   

5.
The intestinal muscles of Procambarus clarkii are striated and yet they are specialized to produce slow peristaltic waves of contraction, not unlike those seen in vertebrate visceral smooth muscle. These muscles cannot be tetanized either by repetitive stimulation or by elevated potassium saline. The excitation-contraction (E-C) coupling mechanism was explored and compared with that known in crustacean skeletal muscle. Contraction is dependent on external Ca2+ which triggers the release of intracellular calcium from the sarcoplasmic reticulum (SR) via calcium-induced calcium release (CICR). Whereas contraction force is proportional to [Ca2+]o up to that in normal saline (13.4 mM), higher levels of Ca2+ reduce force. Ryanodine, which blocks calcium release from the SR, abolishes electrically stimulated contractions and CICR. Relaxation is achieved by removal of calcium from the cytosol in at least two ways, first by the re-loading of calcium into the SR by Ca2+-ATPases and second by the movement of calcium out of the cell by extruding it across the sarcolemma via Na+/Ca2+-exchangers. It is hypothesized that the inability of this muscle to show tetanus arises from inactivation of the voltage-gated calcium channels by high calcium. This is supported by the result that caffeine application causes an increase in tonus and size of phasic contractions by circumventing the sarcolemma and dumping SR calcium stores.  相似文献   

6.

Background

Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2), which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown.

Methodology/Principal Findings

Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER) whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies.

Conclusions/Significance

Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia.  相似文献   

7.
《Biophysical journal》2020,118(2):476-491
It is well known that heart failure (HF) typically coexists with atrial fibrillation (AF). However, until now, no clear mechanism has been established that relates HF to AF. In this study, we apply a multiscale computational framework to establish a mechanistic link between atrial myocyte structural remodeling in HF and AF. Using a spatially distributed model of calcium (Ca) signaling, we show that disruption of the spatial relationship between L-type Ca channels (LCCs) and ryanodine receptors results in markedly increased Ca content of the sarcoplasmic reticulum (SR). This increase in SR load is due to changes in the balance between Ca entry via LCCs and Ca extrusion due to the sodium-calcium exchanger after an altered spatial relationship between these signaling proteins. Next, we show that the increased SR load in atrial myocytes predisposes these cells to subcellular Ca waves that occur during the action potential (AP) and are triggered by LCC openings. These waves are common in atrial cells because of the absence of a well-developed t-tubule system in most of these cells. This distinct spatial architecture allows for the presence of a large pool of orphaned ryanodine receptors, which can fire and sustain Ca waves during the AP. Finally, we incorporate our atrial cell model in two-dimensional tissue simulations and demonstrate that triggered wave generation in cells leads to electrical waves in tissue that tend to fractionate to form wavelets of excitation. This fractionation is driven by the underlying stochasticity of subcellular Ca waves, which perturbs AP repolarization and consequently induces localized conduction block in tissue. We outline the mechanism for this effect and argue that it may explain the propensity for atrial arrhythmias in HF.  相似文献   

8.
Observations have been made on spermatozoa from the domestic fowl, quail and pigeon (non-passerine birds) and also from the starling and zebra finch (passerine birds). In free motion, all these spermatozoa roll (spin) continuously about the progression axis, whether or not they are close to a plane surface. Furthermore, the direction of roll is consistently clockwise (as seen from ahead). The flagellar wave has been shown to be helical and dextral (as predicted) for domestic fowl sperm when they swim rapidly in low viscosity salines. Calculations have shown that their forward velocity is consistent with their induced angular velocity but that the size of the sperm head is suboptimal for progression speed under these conditions. Dextrally helical waves also occur on the distal flagellum of fowl, quail and pigeon sperm in high viscosity solutions. But in other cases, the mechanism of torque-generation is more problematical. The problem is most profound for passerine sperm, in that typically these cells spin rapidly while seeming to remain virtually straight. Because there is no evidence for a helical wave on these flagella, we have considered other possible means whereby rotation about the local flagellar axis (self-spin) might be achieved. Sometimes, passerine sperm, while maintaining their spinning motion, adopt a fixed curvature; this must be an instance of bend-transfer circumferentially around the axonemal cylinder-though the mechanism is obscure. It is suggested that the self-spin phenomenon may be occurring in non-passerine sperm that in some circumstances spin persistently, yet without expressing regular helical waves. More complex waves are apparent in non-passerine sperm swimming in high viscosity solutions: added to the small scale bends is a large scale, sinistrally helical curvature of the flagellum. It is argued that the flagellum follows this sinistrally helical path (i.e. "screws" though the fluid) because of the shape of the sperm head and the angle at which the flagellum is inserted into it. These conclusions concerning avian sperm motility are thought to have relevance to other animal groups. Also reported are relevant aspects of flagellar ultrastructure for pigeon and starling sperm.  相似文献   

9.
During chemotaxis and phototaxis, sperm, algae, marine zooplankton, and other microswimmers move on helical paths or drifting circles by rhythmically bending cell protrusions called motile cilia or flagella. Sperm of marine invertebrates navigate in a chemoattractant gradient by adjusting the flagellar waveform and, thereby, the swimming path. The waveform is periodically modulated by Ca(2+) oscillations. How Ca(2+) signals elicit steering responses and shape the path is unknown. We unveil the signal transfer between the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) and path curvature (κ). We show that κ is modulated by the time derivative d[Ca(2+)](i)/dt rather than the absolute [Ca(2+)](i). Furthermore, simulation of swimming paths using various Ca(2+) waveforms reproduces the wealth of swimming paths observed for sperm of marine invertebrates. We propose a cellular mechanism for a chemical differentiator that computes a time derivative. The cytoskeleton of cilia, the axoneme, is highly conserved. Thus, motile ciliated cells in general might use a similar cellular computation to translate changes of [Ca(2+)](i) into motion.  相似文献   

10.
Clusters of calcium-loaded sarcoplasmic reticulum (SR) vesicles in agarose gel were previously shown to behave as an excitable medium that propagates calcium waves. In a 3D-hexagonal disposition, the distance between neighboring spheres (which may stand for SR vesicles) is constant and the relationship between distance and vesicular protein concentration is expected to be nonlinear. To obtain a distribution of SR vesicles at different protein concentrations as homogeneous as possible, liquid agarose gels were carefully stirred. Electron micrographs, however, did not confirm the expected relationship between inter-SR vesicle distance and vesicular protein concentration. Light micrographs, to the contrary, resulted in a protein concentration-dependent disposition of clusters of SR vesicles, which is described by a linear function. Stable calcium waves in agarose gel occurred at SR vesicle protein concentrations between 7 and 16 g/l. At lower protein concentrations, local calcium oscillations or abortive waves were observed. The velocities of calcium waves were optimum at approximately 12 g/l and amounted to nearly 60 microm/s. The corresponding distance of neighboring calcium release units was calculated to be approximately 4 microm. The results further show that calcium signaling in the described reaction-diffusion system is optimal in a relatively small range of diffusion lengths. A change by +/-2 microm resulted in a reduction of the propagation velocity by 40%. It would appear that 1), the distance between calcium release units (clusters of ryanodine receptors in cells) is a sensitive parameter concerning propagation of Ca2+ signals; and 2), a dysfunction of the reaction-diffusion system in living cells, however, might have a negative effect on the spreading of intracellular calcium signals, thus on the cell's function.  相似文献   

11.
Symmetry/asymmetry conversion of eukaryotic flagellar waveform is caused by the changes in intracellular Ca2+. Animal sperm flagella show symmetric or asymmetric waveform at lower or higher concentration of intracellular Ca2+, respectively. In Chlamydomonas, high Ca2+ induces conversion of flagellar waveform from asymmetric to symmetry, resulting in the backward movement. This mirror image relationship between animal sperm and Chlamydomonas could be explained by the distinct calcium sensors used to regulate the outer arm dyneins (Inaba 2015). Here we analyze the flagellar Ca2+-response of the prasinophyte Pterosperma cristatum, which shows backward movement by undulating four flagella, the appearance similar to animal sperm. The moving path of Pterosperma shows relatively straight in artificial seawater (ASW) or ASW in the presence of a Ca2+ ionophore A23187, whereas it becomes circular in a low Ca2+ solution. Analysis of flagellar waveform reveals symmetric or asymmetric waveform propagation in ASW or a low Ca2+ solution, respectively. These patterns of flagellar responses are completely opposite to those in sperm flagella of the sea urchin Anthocidaris crassispina, supporting the idea previously proposed that the difference in flagellar response to Ca2+ attributes to the evolutional innovation of calcium sensors of outer arm dynein in opisthokont or bikont lineage.  相似文献   

12.
Data obtained by manual digitization of photographs of flagellar bending waves have been analyzed by determining size parameters for the bends by least-squares fitting of a model waveform. These parameters were then used to normalize the data so that the average shape of the bends could be determined. Best fits were obtained with a model waveform derived from the constant curvature waveforms used previously but with provision for a linear change in curvature across the central region of the bend-the gradient curvature model (GCM). The central regions of the GCM bending waves are separated by transition regions with length determined by a parameter called the truncation factor (FT). Fitting the GCM to sine-generated bending waves give optimal fit when FT = 0.34. Fitting the GCM to four different samples of flagellar bending waves gave best fits with values of FT ranging from 0.17 for ATP-reactivated Lytechinus spermatozoa beating at approximately 10 Hz to 0.32 for live spermatozoa of Arbacia. The difference between the Arbacia waveforms and a sine-generated waveform is therefore very small, but a sine-generated waveform lacks the degree of freedom represented by FT that is required to fit other waveforms optimally. The residual differences between the waveform data and optimal GCM waveforms were averaged and found to be small. In most cases, the curvature in the central region of the optimal GCM decreased in magnitude towards the tip of the flagellum; however, this slope was highly variable and sometimes positive. Significant variations in both this slope and FT were found in individual bends as they propagated along a flagellum.  相似文献   

13.
The transformation of hamster sperm motility during capacitation in vitro and during maturation in the caudal epididymis was analyzed and compared using videomicrography. Sperm recovered from the distal portion of the caudal epididymis, as well as ejaculated sperm recovered from the uterus exhibited low amplitude, planar flagellar beating. By 3 hr of incubation under capacitating conditions, the caudal epididymal sperm were swimming in helical patterns apparently produced by significantly increased acuteness of flagellar bending and by torsion seen as abrupt, periodic turning of the head. By 4 hr, most sperm were hyperactivated, swimming in circles resulting from asymmetrical, planar flagellar bending that was significantly more acute than the preceding patterns. When motility parameters of fresh sperm were compared with those of sperm swimming in the transitional helical pattern and with hyperactivated sperm, transitional sperm had significantly higher net and average path velocities than the others, indicating that they covered space at the greatest rate. This suggests that the transitional phase plays an important role in sperm transport. Sperm recovered from the proximal region of the caudal epididymis, near the corpus, swam in either the helical or hyperactivated patterns, or a mixture of the two. The means of their flagellar curvature ratios and linear indices were intermediate between helical and hyperactivated mean values. Thus, sperm undergoing final maturation in the caudal epididymis reverse the pattern of development of hyperactivation. Also, the development of hyperactivated motility must therefore entail induction of a preexisting potential for flagellar movement, rather than a maturational process.  相似文献   

14.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   

15.
In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.  相似文献   

16.
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among‐species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade‐off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.  相似文献   

17.
All species of the Drosophila obscura group exhibit within-ejaculate sperm length dimorphism. The present work is a contribution to the understanding of sperm competition through a comparative study of sperm kinetic parameters in four of these species. Videomicrographic observations at 200 frames per second of sperm from males and females, out of the storage organ, prior or after storage were made. Drosophila sperm display both major and minor waves. The former is analysed by measuring coiling diameter (micron) and the latter by recording both beat frequency (s-1) and wave propagation velocity (micron.s-1). Results show that the 'behaviour' of short and long spermatozoa noticeably differ: short sperm kinetics remains unaltered after storage while both major and minor waves of long spermatozoa are markedly modified. Thus, evidence is provided here of a sort of "differential activation" which is assumed to result in different survival abilities of short and long sperm within the storage organ of females.  相似文献   

18.
Congenital nystagmus (CN) is a disorder of the ocular motility characterized by oscillatory eye movements preventing the correct fixation of a target. Many typical waveforms of eye position recordings have been recognized and classified in the literature: in jerk CN a slow phase eye movement is followed by a fast phase, giving rise to a typical saw-tooth waveform, while in pendular CN the eyes exhibit a periodic motion, giving rise to an approximately sinusoidal waveform. Dual jerk waveforms seemed to show small, rapid oscillations superimposed on a jerk-like waveform, thus being originary classified as a mixture of jerk and pendular CN. On the contrary, a theoretical model of CN has appeared recently, which suggests a possible interpretation of the small amplitude oscillations in dual jerk waveforms as consecutive pieces of growing and decaying exponentials.By spectral analysis of dual jerk waveforms in a number of patients with CN, we show that the oscillations are truly sinusoidal in nature, thus suggesting the possibility of a different explanation of dual jerk waveforms in CN.Preliminary results of this work were presented at XIV ICMP —International Congress of Medical Physics, Espoo, Finland, 11–16 August 1985  相似文献   

19.
Three experimental systems are described including sarcoplasmic reticulum (SR) vesicles, reconstituted proteoliposomes, and recombinant protein obtained by gene transfer and expression in foreign cells. It is shown that the Ca2+ ATPase of sarcoplasmic reticulum (SR) includes an extramembranous globular head which is connected through a stalk to a membrane bound region. Cooperative binding of two calcium ions occurs sequentially, within a channel formed by four clustered helices within the membrane bound region. Destabilization of the helical cluster is produced following enzyme phosphorylation by ATP at the catalytic site in the extramembranous region. The affinity and orientation of the Ca2+ binding site are thereby changed, permitting vectorial dissociation of bound Ca2+ against a concentration gradient. A long range linkage between phosphorylation and Ca2+ binding sites is provided by an intervening peptide segment that retains high homology in cation transport ATPases, and whose function is highly sensitive to mutational perturbations.  相似文献   

20.
Background information. Spermatozoa show several changes in flagellar waveform, such as upon fertilization. Ca2+ has been shown to play critical roles in modulating the waveforms of sperm flagella. However, a Ca2+‐binding protein in sperm flagella that regulates axonemal dyneins has not been fully characterized. Results. We identified a novel neuronal calcium sensor family protein, named calaxin (Ca2+‐binding axonemal protein), in sperm flagella of the ascidian Ciona intestinalis. Calaxin has three EF‐hand Ca2+‐binding motifs, and its orthologues are present in metazoan species, but not in yeast, green algae or plant. Immunolocalization revealed that calaxin is localized near the outer arm of the sperm flagellar axonemes. Moreover, it is distributed in adult tissues bearing epithelial cilia. An in vitro binding experiment indicated that calaxin binds to outer arm dynein. A cross‐linking experiment showed that calaxin binds to β‐tubulin in situ. Overlay experiments further indicated that calaxin binds the β‐dynein heavy chain of outer arm dynein in the presence of Ca2+. Conclusions. These results suggest that calaxin is a potential Ca2+‐dependent modulator of outer arm dynein in metazoan cilia and flagella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号