首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The current study was undertaken with the goal being isolation, cultivation, and characterization of ovine mesenchymal stem cells (oMSC). Furthermore, the objective was to determine whether biological active polycaprolactone-co-lactide (trade name PCL) scaffolds support the growth and differentiation of oMSC in vitro. The oMSC were isolated from the iliac crest of six merino sheep. Three factors were used to demonstrate the MSC properties of the isolated cells in detail. (1) Their ability to proliferate in culture with a spindle-shaped morphology, (2) presence of specific surface marker proteins, and (3) their capacity to differentiate into the three classical mesenchymal pathways, osteoblastic, adipogenic, and chondrogenic lineages. Furthermore, embroidered PCL scaffolds were coated with collagen I (coll I) and chondroitin sulfate (CS). The porous structure of the scaffolds and the coating with coll I/CS allowed the oMSC to adhere, proliferate, and to migrate into the scaffolds. The coll I/CS coating on the PCL scaffolds induced osteogenic differentiation of hMSC, without differentiation supplements, indicating that the scaffold also has an osteoinductive character. In conclusion, the isolated cells from the ovine bone marrow have similar morphologic, immunophenotypic, and functional characteristics as their human counterparts. These cells were also found to differentiate into multiple mesenchymal cell types. This study demonstrates that embroidered PCL scaffolds can act as a temporary matrix for cell migration, proliferation, and differentiation of oMSC. The data presented will provide a reliable model system to assess the translation of MSC-based therapy into a variety of valuable ovine experimental models under autologous settings.  相似文献   

3.
The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.  相似文献   

4.
Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.  相似文献   

5.
For tissue engineering and regeneration, a porous scaffold with interconnected networks is needed to guide cell attachment and growth/ingrowth in three-dimensional (3D) structure. Using a rapid prototyping (RP) technique, we designed and fabricated 3D plotting system and three types of scaffolds: those from polycaprolactone (PCL), those from PCL and hydroxyapatite (HA), and those from PCL/HA and with a shifted pattern structure (PCL/HA/SP scaffold). Shifted pattern structure was fabricated to increase the cell attachment/adhesion. The PCL/HA/SP scaffold had a lower compressive modulus than PCL and PCL/HA scaffold. However, it has a better cell attachment than the scaffolds without a shifted pattern. MTT assay and alkaline phosphatase activity results for the PCL/HA/SP scaffolds were significantly enhanced compared to the results for the PCL and PCL/HA scaffolds. According to their degree of cell proliferation/differentiation, the scaffolds were in the following order: PCL/HA/SP > PCL/HA > PCL. These 3D scaffolds will be applicable for tissue engineering based on unique plotting system.  相似文献   

6.
7.
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three‐dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long‐term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform‐sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live‐dead assay, and real‐time RT‐PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell‐seeded scaffold product for applications in regenerative medicine.  相似文献   

8.
Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.  相似文献   

9.
Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness. The composite 3D printed/nanofibrous scaffolds were seeded with primary chondrocytes and tested in vitro for cell adhesion, proliferation and differentiation. The experiment showed excellent cell infiltration, viability, and good cell proliferation. On the other hand, partial chondrocyte dedifferentiation was shown. Other materials supporting chondrogenic differentiation will be investigated in future studies.  相似文献   

10.
Novel bioengineering strategies for the ex vivo fabrication of native‐like tissue‐engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost‐effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone‐marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(?‐caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC–PCL constructs are then transferred to 3D‐extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8‐fold) in comparison to their non‐perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.  相似文献   

11.
Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these results suggest that microporous electrospun scaffolds pre-seeded with fibroblasts promote greater wound-healing than acellular scaffolds.  相似文献   

12.
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials.METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively.RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape.CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy.  相似文献   

13.
14.
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking the PCL matrix in a 10 mg/mL collagen solution overnight. These two types of coated nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of human dermal fibroblasts (HDF). It was found that coatings of collagen on PCL nanofibrous matrix definitely favored cells proliferation, and the efficiency is coating means dependent. As compared to PCL, the HDF density on the Collagen-r-PCL nanofiber membrane almost increased linearly by 19.5% (2 days), 22.9% (4 days), and 31.8% (6 days). In contrast, the roughly collagen-coated PCL increased only by 5.5% (2 days), 11.0% (4 days), and 21.0% (6 days). SEM observation indicated that the Collagen-r-PCL nanofibers encouraged cell migration inside the scaffolds. These findings suggest that the Collagen-r-PCL nanofibers can be used as novel functional biomimetic nanofibers toward achieving excellent integration between cells and scaffolds for tissue engineering applications.  相似文献   

15.
Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair.  相似文献   

16.
Tissue engineering utilizing periodontal ligament stem cells (PDLSCs) has recently been proposed for the development of new periodontal regenerative therapies. Although the use of autologous PDLSC transplantation eliminates the potential of a significant host immune response against the donor cells, it is often difficult to generate enough PDLSCs from one donor source due to the variation of stem cell potential between donors and disease state of each patient. In this study, we examined the immunomodulatory properties of PDLSCs as candidates for new allogeneic stem cell‐based therapies. Human PDLSCs displayed cell surface marker characteristics and differentiation potential similar to bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). PDLSCs, BMSSCs, and DPSCs inhibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen or in an allogeneic mixed lymphocyte reaction (MLR). Interestingly, gingival fibroblasts (GFs) also suppressed allogeneic PBMNC proliferation under both assay conditions. PDLSCs, BMSSCs, DPSCs, and GFs exhibited non‐cell contact dependent suppression of PBMNC proliferation in co‐cultures using transwells. Furthermore, conditioned media (CM) derived from each cell type pretreated with IFN‐γ partially suppressed PBMNC proliferation when compared to CMs without IFN‐γ stimulation. In all of these mesenchymal cell types cultured with activated PBMNCs, the expression of TGF‐β1, hepatocyte growth factor (HGF) and indoleamine 2, 3‐dioxygenase (IDO) was upregulated while IDO expression was upregulated following stimulation with IFN‐γ. These results suggest that PDLSCs, BMSSCs, DPSCs, and GFs possess immunosuppressive properties mediated, in part, by soluble factors, produced by activated PBMNCs. J. Cell. Physiol. 219: 667–676, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Conductive nanofibrous scaffolds with that can conduct electrical current have a great potential in neural tissue engineering. The purpose of this study was to survey effects of electrical stimulation and polycaprolactone/polypyrrole/multiwall carbon nanotube (PCL/PPY/MWCNTs) fibrous scaffold on photoreceptor differentiation of trabecular meshwork mesenchymal stem cells (TM-MSCs). PCL/PPY/MWCNTs scaffold was made by electrospinning method. TM-MSCs were seeded on PCL/PPY/MWCNTs scaffold and stimulated with a potential of 115 V/m. Scanning electron microscopy, transmission electron microscopy, and FT-IR were used to evaluate the fabricated scaffold. Immunofluorescence and quantitative real-time polymerase chain reaction were used to examine differentiated cells. Scanning electron microscopy, transmitting electron microscopy, and FT-IR confirmed the creation of the composite structure of fibers. RT-qPCR analysis showed that the expression of rhodopsin and peripherin genes in electrically stimulated cells were significantly higher (5.7- and 6.23-fold, respectively; p ≤ 0.05) than those with no electrical stimulation. Collectively, it seems that the combination of PCL/PPY/MWCNTs scaffold, as a suitable conductive scaffold, and electrical stimulation could be an effective approach in the differentiation of stem cells in retinal tissue engineering.  相似文献   

18.
AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.  相似文献   

19.
Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix‐embedded cells. In the present study, we present a strategy to encase a bioprinted, cell‐containing, and soft scaffold with an electrospun mat. The electrospun poly(?‐caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho‐silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast‐related SaOS‐2 cells in vitro. Analysis of the microstructure of the 300–700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue‐like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix.  相似文献   

20.
Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号