首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
Tian M  Bai C  Lin Q  Lin H  Liu M  Ding F  Wang HR 《FEBS letters》2011,585(14):2199-2204
Smurf1-mediated RhoA ubiquitination and degradation plays key roles in regulation of cell polarity and protrusive activity. However, how Smurf1 recognizes RhoA is still not clear. Here we report that the C2 domain of Smurf1 is necessary and sufficient for binding RhoA, and therefore is crucial for targeting RhoA for ubiquitination. In contrast, the C2 domain is dispensable for Smurf1-mediated ubiquitination of Smad1. Consistent with its biochemical specificity, the C2 domain is essential for Smurf1-regulated protrusion formation but not BMP signaling. Therefore, our study reveals the mechanism of the C2 domain of Smurf1 in substrate selection.  相似文献   

2.
Smad ubiquitin regulatory factor 1 (Smurf1), a HECT-type E3 ubiquitin ligase, interacts with inhibitory Smad7 and induces cytoplasmic localization of Smad7. Smurf1 then associates with transforming growth factor-beta type I receptor (TbetaR-I) and enhances the turnover of this receptor. However, the mechanisms of the nuclear export and plasma membrane localization of the Smurf1.Smad7 complex have not been elucidated. We show here that Smurf1 targets Smad7 to the plasma membrane through its N-terminal conserved 2 (C2) domain. Both wild-type Smurf1 (Smurf1(WT)) and Smurf1 lacking the C2 domain (Smurf1(deltaC2)) bound to Smad7 and translocated nuclear Smad7 to the cytoplasm. However, unlike Smurf1(WT), Smurf1(deltaC2) did not move to the plasma membrane and failed to recruit Smad7 to the cell surface TbetaR-II.TbetaR-I complex. Moreover, although Smurf1(deltaC2) induced ubiquitination of Smad7, it failed to induce the ubiquitination and degradation of TbetaR-I and did not enhance the inhibitory activity of Smad7. Thus, these results suggest that the plasma membrane localization of Smad7 by Smurf1 requires the C2 domain of Smurf1 and is essential for the inhibitory effect of Smad7 in the transforming growth factor-beta signaling pathway.  相似文献   

3.
The HECT-type E3 Smad ubiquitination regulation factor 1 (Smurf1) functions in regulation of cell polarity and bone homeostasis by targeting Smads, Runx2, RhoA and MEKK2 for ubiquitination and degradation. In a yeast two-hybrid screening, we identified TNF receptor-associated factor 4 (TRAF4) as a candidate substrate and was further validated. The PY motifs of TRAF4 mediated the interaction with the second WW domain of Smurf1. Overexpression of Smurf1 reduced the protein levels of TRAF4 dependent of its E3 activity and the proteasome. Further, we showed that all six members of TRAF family could be ubiquitinated by Smurf1. Consequently, Smurf1 interfered with the functions of TRAFs in NF-κB signaling under stimulation or not. These results suggested a new role of Smurf1 in inflammation and immunity through controlling the degradation of TRAFs.  相似文献   

4.
Mono- and polyubiquitylation of proteins are key steps in a wide range of biological processes. However, the molecular mechanisms that mediate these different events are poorly understood. Here, we employed NMR spectroscopy to map a non-covalent ubiquitin binding surface (UBS) on the Smurf ubiquitin ligase HECT domain. Analysis of mutants of the HECT UBS reveal that interfering with the UBS surface blocked Smurf-dependent degradation of its substrate RhoA in cells. In vitro analysis revealed that the UBS was not required for UbcH7-dependent charging of the HECT catalytic cysteine. Surprisingly, although the UBS was required for polyubiquitylation of both Smurf itself and the Smurf substrate RhoA, it was not required for monoubiquitylation. Furthermore, we show that mutating the UBS interfered with efficient binding of a monoubiquitylated form of RhoA to the Smurf HECT domain. Our findings suggest the UBS promotes polyubiquitylation by stabilizing ubiquitylated substrate binding to the HECT domain.  相似文献   

5.
《Journal of molecular biology》2019,431(24):4834-4847
Downregulation of ubiquitin (Ub) ligase activity prevents premature ubiquitination and is critical for cellular homeostasis. Nedd4 Ub ligases share a common domain architecture and yet are regulated in distinct ways through interactions of the catalytic HECT domain with the N-terminal C2 domain or the central WW domain region. Smurf1 and Smurf2 are two highly related Nedd4 ligases with ~70% overall sequence identity. Here, we show that the Smurf1 C2 domain interacts with the HECT domain and inhibits ligase activity in trans. However, in contrast to Smurf2, we find that full-length Smurf1 is a highly active Ub ligase, and we can attribute this striking difference in regulation to the lack of one WW domain (WW1) in Smurf1. Using NMR spectroscopy and biochemical assays, we identified the WW1 region as an additional inhibitory element in Smurf2 that cooperates with the C2 domain to enhance HECT domain binding and Smurf2 inhibition. Our work provides important insights into Smurf regulation and highlights that the activities of highly related proteins can be controlled in distinct ways.  相似文献   

6.
Previously, Smad ubiquitination regulatory factor 1 (Smurf1)-mediated Lys29 (K29)-linked poly-ubiquitination of Axin has been identified as a novel regulatory process in Wnt/β-catenin signaling. In this work, we discovered that the C2 domain of Smurf1 is critical for targeting Axin for ubiquitination. We found that the C2 domain-mediated plasma membrane localization of Smurf1 is required for Axin ubiquitination, and interfering with that disturbs the co-localization of Smurf1 and Axin around the plasma membrane. Moreover, the C2 domain of Smurf1, rather than its WW domains, is involved in Smurf1''s interaction with Axin; and the putative PPXY motifs (PY motif) of Axin are not essential for such an interaction, indicating that Smurf1 binds to Axin in a non-canonical way independent of WW-PY interaction. Further, we found that Smurf1-Axin interaction and Axin ubiquitination are attenuated in the G2/M phase of cell cycle, contributing to an increased cell response to Wnt stimulation at that stage. Collectively, we uncovered a dual role of Smurf1 C2 domain, recruiting Smurf1 to membrane for accessing Axin and mediating its interaction with Axin, and that Smurf1-mediated Axin ubiquitination is subjected to the regulation of cell cycle.  相似文献   

7.
Mutation of CCM2 predisposes individuals to cerebral cavernous malformations, vascular abnormalities that cause seizures and hemorrhagic stroke. CCM2 has been proposed to regulate the activity of RhoA for maintenance of vascular integrity. Herein, we define a novel mechanism where the CCM2 phosphotyrosine binding (PTB) domain binds the ubiquitin ligase (E3) Smurf1, controlling RhoA degradation. Brain endothelial cells with knockdown of CCM2 have increased RhoA protein and display impaired directed cell migration. CCM2 binding of Smurf1 increases Smurf1-mediated degradation of RhoA. CCM2 does not significantly alter the catalytic activity of Smurf1, nor is CCM2 a Smurf1 substrate. Rather the CCM2-Smurf1 interaction functions to localize Smurf1 for RhoA degradation. These findings provide a molecular mechanism for the pathogenesis of cerebral cavernous malformations (CCM) resulting from loss of CCM2-mediated localization of Smurf1, which controls RhoA degradation required for maintenance of normal endothelial cell physiology.We previously characterized a scaffold-like protein named osmosensing scaffold for MEKK3 (OSM) for its ability to bind actin and localize to Rac-containing membrane ruffles and its obligate requirement for p38 activation in response to hyperosmotic stress (1). Subsequently, the gene encoding OSM, CCM2, was found to be mutated in the human disease cerebral cavernous malformations (CCM)2 (2). Cerebral cavernous malformations are vascular lesions of the central nervous system characterized as clusters of dilated, thin walled blood vessels. CCM lesions are fragile and prone to vascular leakiness and rupture, leading to hemorrhages that cause seizure and stroke (3, 4).Recently, CCM2 knockdown endothelial cells were shown to have increased activation of RhoA (5), although the mechanism was not defined. Herein, we demonstrate a molecular mechanism for activation of this pathway. Through a novel CCM2 PTB domain interaction with the Smurf1 homologous to the E6-AP C terminus (HECT) domain, we now show that CCM2 binds the E3 ligase Smurf1 for the control of RhoA degradation.  相似文献   

8.
Smurf1, a member of HECT-type E3 ubiquitin ligases, regulates cell polarity and protrusive activity by inducing ubiquitination and subsequent proteasomal degradation of the small GTPase RhoA. We report here that hPEM-2, a guanine nucleotide exchange factor for the small GTPase Cdc42, is a novel target of Smurf1. Pulse-chase labeling and a ubiquitination experiment using MG132, a proteasomal inhibitor, indicate that Smurf1 induces proteasomal degradation of hPEM-2 in cells. GST pull-down assays with heterologously expressed firefly luciferase-fusion proteins that include partial sequences of hPEM-2 reveal that part of the PH domain (residues 318-343) of hPEM-2 is sufficient for binding to Smurf1. In contrast, the hPEM-2 binding domain in Smurf1 was mapped to the C2 domain. Although it has been reported that the binding activities of some C2 domains to target proteins are regulated by Ca2+, Smurf1 interacts with hPEM-2 in a Ca2+-independent manner. Our discovery that hPEM-2 is, in addition to RhoA, a target protein of Smurf1 suggests that Smurf1 plays a crucial role in the spatiotemporal regulation of Rho GTPase family members.  相似文献   

9.
Bryan B  Cai Y  Wrighton K  Wu G  Feng XH  Liu M 《FEBS letters》2005,579(5):1015-1019
The Rho-family of small GTPases consists of essential regulators of neurite outgrowth, axonal pathfinding, and dendritic arborization. Previous work has demonstrated in non-neuronal cell types that Smurf1, an E3 ubiquitin ligase, regulates cell polarity and protrusive activity via PKCzeta-dependent recruitment to cellular protrusion sites, and subsequent ubiquitination and proteasomal degradation of RhoA. In this study, we show that Smurf1 enhances neurite outgrowth in Neuro2a neuroblastoma cells. We demonstrate that RhoA is ubiquitinated, and that Smurf1 and RhoA physically interact in vivo. Interestingly, Smurf1 overexpression in Neuro2a cells dramatically reduces RhoA protein levels during dibutyric cyclic AMP, but not retinoic acid induced neurite outgrowth. This Smurf1-dependent reduction in RhoA protein levels was abrogated using the general proteasome inhibitor MG132, suggesting that RhoA is targeted for ubiquitination and degradation via Smurf1. Together, our data suggest that localized regulation of different subsets of Rho GTPases by specific guidance signals results in an intracellular asymmetry of RhoA activity, which could regulate neurite outgrowth and guidance.  相似文献   

10.
Cui Y  He S  Xing C  Lu K  Wang J  Xing G  Meng A  Jia S  He F  Zhang L 《The EMBO journal》2011,30(13):2675-2689
Smad ubiquitination regulatory factor 1 (Smurf1), an homologous to E6AP C-terminus (HECT)-type E3 ubiquitin ligase, performs a crucial role in the regulation of the bone morphogenetic protein (BMP) signalling pathway in both embryonic development and bone remodelling. How the stability and activity of Smurf1 are negatively regulated remains largely unclear. Here, we report that F-box and LRR domain-containing protein 15 (FBXL15), an F-box protein of the FBXL family, forms an Skp1-Cullin1-F-box protein-Roc1 (SCF)(FBXL15) ubiquitin ligase complex and targets Smurf1 for ubiquitination and proteasomal degradation. FBXL15, through its leucine-rich repeat domain, specifically recognizes the large subdomain within the N-lobe of the Smurf1 HECT domain and promotes the ubiquitination of Smurf1 on K355 and K357 within the WW-HECT linker region. In this way, FBXL15 positively regulates BMP signalling in mammalian cells. Knockdown of fbxl15 expression in zebrafish embryos by specific antisense morpholinos causes embryonic dorsalization phenocoping BMP-deficient mutants. Injection of FBXL15 siRNAs into rat bone tissues leads to a significant loss of bone mass and decrease in bone mineral density. Collectively, our results demonstrate that Smurf1 stability is suppressed by SCF(FBXL15)-mediated ubiquitination and that FBXL15 is a key regulator of BMP signalling during embryonic development and adult bone formation.  相似文献   

11.
Lu K  Yin X  Weng T  Xi S  Li L  Xing G  Cheng X  Yang X  Zhang L  He F 《Nature cell biology》2008,10(8):994-1002
E3 ubiquitin ligases are final effectors of the enzyme cascade controlling ubiquitylation. A central issue in understanding their regulation is to decipher mechanisms of their assembly and activity. In contrast with RING-type E3s, fewer mechanisms are known for regulation of HECT-type E3s. Smad ubiquitylation regulatory factor 1 (Smurf1), a C2-WW-HECT-domain E3, is crucial for bone homeostasis, in which it suppresses osteoblast activity. However, whether and how its activity is regulated remains unclear. Here we show that Smurf1, but not Smurf2, interacts with casein kinase-2 interacting protein-1 (CKIP-1), resulting in an increase in its E3 ligase activity. Surprisingly, CKIP-1 targets specifically the linker region between the WW domains of Smurf1, thereby augmenting its affinity for and promoting ubiquitylation of the substrate. Moreover, CKIP-1-deficient mice undergo an age-dependent increase in bone mass as a result of accelerated osteogenesis and decreased Smurf1 activity. These findings provide evidence that the WW domains linker is important in complex assembly and in regulating activity of HECT-type E3s and that CKIP-1 functions as the first auxiliary factor to enhance the activation of Smurf1.  相似文献   

12.
Members of the Rho family of small guanosine triphosphatases are well known for their important functions in the dynamic regulation of actin cytoskeleton. We recently found that a HECT domain E3 ubiquitin ligase, called Smurf1, regulates cell polarity and protrusion formation by targeting RhoA for degradation at cellular protrusions. Smurf1 regulates these functions as a partner of protein kinase Cxi, a component of the polarity complex. Furthermore, using siRNA-mediated knockdown, we demonstrated this pathway is required to maintain the transformed morphology and motility of a tumor cell. Smurf1 thus provides a link between the control of cell polarity and ubiquitin-mediated RhoA degradation during directional cell movements. Here we further discuss the mechanism by which the spatial control of Smurf1 activity is accomplished and the potential implications of these findings in cancer and development.  相似文献   

13.
Members of the Rho family of small guanosine triphosphatases are well known for their important functions in the dynamic regulation of actin cytoskeleton. We recently found that a HECT domain E3 ubiquitin ligase, called Smurf1, regulates cell polarity and protrusion formation by targeting RhoA for degradation at cellular protrusions. Smurf1 regulates these functions as a partner of protein kinase Czeta, a component of the polarity complex. Furthermore, using siRNA-mediated knockdown, we demonstrated this pathway is required to maintain the transformed morphology and motility of a tumor cell. Smurf1 thus provides a link between the control of cell polarity and ubiquitin-mediated RhoA degradation during directional cell movements. Here we further discuss the mechanism by which the spatial control of Smurf1 activity is accomplished and the potential implications of these findings in cancer and development.  相似文献   

14.
Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal-amoeboid-like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.  相似文献   

15.
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.  相似文献   

16.
Stiess M  Bradke F 《Neuron》2011,69(2):183-185
During axon specification, growth promoting proteins localize selectively to the growing axon. In this issue of Neuron, Cheng et?al. report how selective protein degradation, controlled by a substrate switch of the ubiquitin ligase Smurf1, specifies Par6 and RhoA localization and thereby regulates neuronal polarity.  相似文献   

17.
Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.  相似文献   

18.
Yamashita M  Ying SX  Zhang GM  Li C  Cheng SY  Deng CX  Zhang YE 《Cell》2005,121(1):101-113
Bone is constantly resorbed and formed throughout life by coordinated actions of osteoclasts and osteoblasts. Here we show that Smurf1, a HECT domain ubiquitin ligase, has a specific physiological role in suppressing the osteogenic activity of osteoblasts. Smurf1-deficient mice are born normal but exhibit an age-dependent increase of bone mass. The cause of this increase can be traced to enhanced activities of osteoblasts, which become sensitized to bone morphogenesis protein (BMP) in the absence of Smurf1. However, loss of Smurf1 does not affect the canonical Smad-mediated intracellular TGFbeta or BMP signaling; instead, it leads to accumulation of phosphorylated MEKK2 and activation of the downstream JNK signaling cascade. We demonstrate that Smurf1 physically interacts with MEKK2 and promotes the ubiquitination and turnover of MEKK2. These results indicate that Smurf1 negatively regulates osteoblast activity and response to BMP through controlling MEKK2 degradation.  相似文献   

19.
20.
The conjugation of ubiquitin to proteins involves a cascade of activating (E1), conjugating (E2), and ubiquitin-ligating (E3) type enzymes that commonly signal protein destruction. In TGFbeta signaling the inhibitory protein Smad7 recruits Smurf2, an E3 of the C2-WW-HECT domain class, to the TGFbeta receptor complex to facilitate receptor degradation. Here, we demonstrate that the amino-terminal domain (NTD) of Smad7 stimulates Smurf activity by recruiting the E2, UbcH7, to the HECT domain. A 2.1 A resolution X-ray crystal structure of the Smurf2 HECT domain reveals that it has a suboptimal E2 binding pocket that could be optimized by mutagenesis to generate a HECT domain that functions independently of Smad7 and potently inhibits TGFbeta signaling. Thus, E2 enzyme recognition by an E3 HECT enzyme is not constitutively competent and provides a point of control for regulating the ubiquitin ligase activity through the action of auxiliary proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号