首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spontaneous breathing of a subject during measurements of respiratory impedance (Zrs) by the forced oscillation technique (FOT) induces errors that result in biased impedance estimates, especially at low frequencies. Although in standard measurements this bias may be avoided by using special impedance estimators, there are two applications of FOT for which such estimators are not useful: when a head generator is used and when measurements are made during intubation. In this paper we describe a data-processing procedure for unbiased impedance estimation for all FOT setups. The proposed estimator (Z) was devised for pseudorandom excitation and is based on time-domain signal averaging before frequency analysis. The performance of estimator Z was first analyzed by computer simulation of a head generator setup and a setup including an endotracheal tube to measure (2-32 Hz) a resistance-inertance-elastance model mimicking Zrs of a healthy subject. Second, Z was assessed during real measurements in 16 healthy subjects. The results obtained in the simulation (e.g., error in elastance was reduced from 15.6% with most conventional estimators to 3.3% with Z in simulation of head generator setup) and in the measurements in subjects (differences of less than 1.6% between Z and a reference) confirmed the theoretical lack of bias of Z and its practical suitability for the different FOT setups. In addition to its applicability in the situations in which no other unbiased estimators are available, estimator Z is also advantageous in most conventional applications of FOT, since it requires much less computing time and thus allows on-line Zrs measurements.  相似文献   

2.
Obstructive lung diseases are often characterized by heterogeneous patterns of bronchoconstriction, although specific relationships between structural heterogeneity and lung function have yet to be established. We measured respiratory input impedance (Zrs) in eight anesthetized dogs using broadband forced oscillations at baseline and during intravenous methacholine (MCh) infusion. We also obtained high-resolution computed tomographic (HRCT) scans in 4 dogs and identified 20-30 individual airway segments in each animal. The Zrs spectra and HRCT images were obtained before and 5 min following a deep inspiration (DI) to 35 cmH(2)O. Each Zrs spectrum was fitted with two different models of the respiratory system: 1) a lumped airways model consisting of a single airway compartment, and 2) a distributed airways model incorporating a continuous distribution of airway resistances. For the latter, we found that the mean level and spread of airway resistances increased with MCh dose. Whereas a DI had no effect on average airway resistance during MCh infusion, it did increase the level of airway heterogeneity. At baseline and low-to-moderate doses of MCh, the lumped airways model was statistically more appropriate to describe Zrs in the majority of dogs. At the highest doses of MCh, the distributed airways model provided a superior fit in half of the dogs. There was a significant correlation between heterogeneity assessed with inverse modeling and the standard deviation of airway diameters obtained from HRCT. These data demonstrate that increases in airway heterogeneity as assessed with forced oscillations and inverse modeling can be linked to specific structural alterations in airway diameters.  相似文献   

3.
Repetitive occurrence of partial or total upper airway obstruction characterizes several respiratory dysfunctions such as the obstructive sleep apnea syndrome (OSAS). In OSAS patients, pharyngeal collapses are linked to a decrease in upper airway muscle activity during sleep which causes decreased upper airway wall stiffness. Continuous positive airway pressure (CPAP) is recommended as the treatment of choice. Advancements in CPAP therapy require early detection of respiratory events in real time to adapt the level of the applied pressure to airway collapsibility. The forced oscillation technique (FOT) is a noninvasive method which reflects patients' airway patency by measuring respiratory impedance. The aim of this study was to evaluate by a mathematical model of the respiratory system if FOT can provide an early detection index of total or partial upper airway obstruction. Furthermore, the simulation should suggest which characteristic features are relevant for early apnea detection in measured clinical data. The respiratory system has been treated as a series of cylindrical segments. The oropharynx analog of the model allows simulation of upper airway collapse, mimicking the situation in patients with OSAS. We calculated the input impedance for different degrees of upper airway obstruction ranging from unobstructed airways to total occlusion. Furthermore, we simulated different upper airway wall compliances. We compared the simulation with real data. The results of the study suggest that FOT is a valuable tool for assessing the degree of upper airway obstruction in patients with OSAS. Especially, the phase angle of the impedance seems to be a potentially useful tool for early apnea detection by assessing the upper airway wall collapsibility. Received: 23 July 1998 / Accepted in revised form: 26 January 1999  相似文献   

4.
Frey, Urs, Bela Suki, Richard Kraemer, and Andrew C. Jackson. Human respiratory input impedance between 32 and 800 Hz,measured by interrupter technique and forced oscillations. J. Appl. Physiol. 82(3):1018-1023, 1997.Respiratory input impedance (Zin) over a widerange of frequencies (f) has beenshown to be useful in determining airway resistance (Raw) and tissueresistance in dogs or airway wall properties in human adults. Zinmeasurements are noninvasive and, therefore, potentially useful ininvestigation of airway mechanics in infants. However, accuratemeasurements of Zin at these f valueswith the use of forced oscillatory techniques (FOT) in infants aredifficult because of their relatively high Raw and large compliance ofthe face mask. If pseudorandom noise pressure oscillations generated bya loudspeaker are applied at the airway opening (FOT), the power of theresulting flow decreases inversely withf because of capacitive shunting intothe volume of the gas in the speaker chamber and in the face mask. Westudied whether high-frequency respiratory Zin can be measured by using rapid flow interruption [high-speed interrupter technique(HIT)], in which we expect the flow amplitude in the respiratorysystem to be higher than in the FOT. We compared Zin measured by HIT with Zin measured by FOT in a dried dog lung and in five healthy adultsubjects. The impedance was calculated from two pressure signalsmeasured between the mouth and the HIT valve. The impedance could beassessed from 32 to 800 Hz. Its real part at lowf as well as thef and amplitude of the first andsecond acoustic resonance, measured by FOT and by HIT, were notsignificantly different. The power spectrum of oscillatory flow whenthe HIT was used showed amplitudes that were at least 100 times greaterthan those when FOT was used, increasing atf > 400 Hz. In conclusion,the HIT enables the measurement of high-frequency Zin data ranging from 32 to 800 Hz with particularly high flow amplitudes and, therefore, possibly better signal-to-noise ratio. This is particularly important in systems with high Raw, e.g., in infants, when measurements have tobe performed through a face mask.

  相似文献   

5.

Background  

Early detection of the effects of smoking is of the utmost importance in the prevention of chronic obstructive pulmonary disease (COPD). The forced oscillation technique (FOT) is easy to perform since it requires only tidal breathing and offers a detailed approach to investigate the mechanical properties of the respiratory system. The FOT was recently suggested as an attractive alternative for diagnosing initial obstruction in COPD, which may be helpful in detecting COPD in its initial phases. Thus, the purpose of this study was twofold: (1) to evaluate the ability of FOT to detect early smoking-induced respiratory alterations; and (2) to compare the sensitivity of FOT with spirometry in a sample of low tobacco-dose subjects.  相似文献   

6.
The dynamic behavior of the lung in health and disease depends on its viscoelastic properties. To better understand these properties, several mathematical models have been utilized by many investigators. In the present work, we present a new approach that characterizes the dynamics of gas flow into a viscoelastic porous medium that models the lung structure. This problem is considered in terms of the lung input impedance on a macro level and parenchymal tissue impedance on the level of an alveolar wall. We start from a basic theoretical analysis in which macroscopic tissue deformations are represented in accordance with the linearized Navier-Stokes equations. This approach has strong theoretical underpinnings in other situations but has not been applied to analyze the impedance of the inflated lung. Our analysis provides a theoretical basis for analyzing the interaction between flow into the lungs as a biophysical diffusion process and parenchymal viscoelasticity described phenomenologically, within the frameworks of standard viscoelasticity and structural damping. This lung impedance incorporates parameters of porosity, permeability, and viscoelasticity on micro and macro levels of parenchymal tissue. The analysis shows the theoretical basis of the transformation from the impedance of alveolar walls or isolated tissue strips to that of the intact parenchyma. We also show how the loading impedance at the lung boundary may have a significant impact on the dynamic behavior of whole lung viscoelasticity. Our analysis may be useful in directing specific tests of different models and for analyzing experimental measurements of viscoelastic parameters of lung material under normal and pathological conditions.  相似文献   

7.
Recent lineage tracing strategies, single-cell RNA sequencing approaches and high-resolution imaging identified remarkable heterogeneity of lung epithelial cells thus leaving open a question as to their specific functions in lung health and disease. Understanding the molecular mechanisms controlling lung epithelial cell morphogenesis and differentiation as well as communication with other cell types and extracellular matrix provides a basis for improving the outcome for patients with respiratory diseases. Although, the substantial progress has been made towards achieving this goal, we are still far away from being able to train/instruct lung epithelial cells in order to facilitate lung repair and regeneration. The special issue of the Cellular Signaling entitled “Between life and death: epithelial cells in lung pathologies” represents a blend of research articles and reviews, in which structural and functional diversities of lung epithelial cells in health and disease are discussed.  相似文献   

8.
A computer model of the mechanical properties of the dog respiratory system based on the asymmetrically branching airway model of Horsfield et al. (11) is described. The peripheral ends of this airway model were terminated by a lumped-parameter impedance representing gas compression in the alveoli, and lung and chest wall tissue properties were derived from measurements made in this laboratory. Using this model we predicted the respiratory system impedance and the distribution of pressures along the airways in the dog lung. Predicted total respiratory system impedances for frequencies between 4 and 64 Hz at three lung volumes were found to compare quite closely to measured impedances in dogs. Serial pressure distributions were found to be frequency-dependent and to result in higher pressures in the lung periphery than at the airway opening at some frequencies. The implications of this finding for high-frequency ventilation are discussed.  相似文献   

9.
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.  相似文献   

10.
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.  相似文献   

11.
To evaluate the contribution of the large airway to total respiratory impedance, we develop a one-dimensional model of pressure and flow in these airways by coupling conservation of mass and momentum equations with the geometric information obtained by the acoustic reflection technique. We use this model to calculate the impedance of the respiratory system distal to the carina from impedance data estimated at the airway opening by the forced oscillation technique. Simulations show that the real part of the impedance distal to the carina is uniformly decreased from the impedance at the airway opening, indicating a resistive loss, while the imaginary part is increased as a function of frequency. We estimate parameter values for a six-parameter two-compartment lung model and for a three-parameter reduction of this model before and after the application of the upper airway data to the impedance spectrum. Although compliance terms seem to be minimally affected by the manipulation of the data, resistance and inertance terms are influenced in a fashion that suggests that the resistive contribution of the upper airway to total respiratory impedance is significant. Furthermore it appears that the elastic nature of the walls of the upper airway also impact on estimates of total respiratory impedance at the airway opening.  相似文献   

12.
Little is known about lung function during early stages of postnatal maturation, although the complex structural changes associated with developing rat lung are well studied. We therefore analyzed corresponding functional (lung volume, respiratory mechanics, intrapulmonary gas mixing, and gas exchange) and structural (alveolar surface area, mean linear intercept length, and alveolar septal thickness) changes of the developing rat lung at 7-90 days. Total lung capacity (TLC) increased from 1.54 +/- 0.07 to 16.7 +/- 2.46 (SD) ml in proportion to body weight, but an increase in body weight exceeded an increase in lung volume by almost twofold. Series dead space volume increased from 0.21 +/- 0.03 to 1.38 +/- 0.08 ml but decreased relative to TLC from 14% to 8%, indicating that parenchymal growth exceeded growth of conducting airways. Diffusing capacity of CO (D(CO)) increased from 8.1 +/- 0.8 to 214.1 +/- 23.5 micromol min(-1) hPa(-1), corresponding to a substantial increase in surface area from 744 +/- 20 to 6,536 +/- 488 cm(2). D(CO) per unit of lung volume is considerably lower in the immature lung, inasmuch as D(CO)/TLC in 7-day-old rats was only 42% of that in adult (90 day-old) rats. In humans, however, infants and adults show comparable specific D(CO). Our functional and structural analysis shows that gas exchange is limited in the immature rat lung. The pivotal step for improvement of gas exchange occurs with the transition from bulk alveolarization to the phase of expansion of air spaces with septal reconstruction and microvascular maturation.  相似文献   

13.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   

14.
Lung morphology and function in human subjects can be monitored with computed tomography (CT). Because many human respiratory diseases are routinely modeled in rodents, a means of monitoring the changes in the structure and function of the rodent lung is desired. High-resolution images of the rodent lung can be attained with specialized micro-CT equipment, which provides a means of monitoring rodent models of lung disease noninvasively with a clinically relevant method. Previous studies have shown respiratory-gated images of intubated and respirated mice. Although the image quality and resolution are sufficient in these studies to make quantitative measurements, these measurements of lung structure will depend on the settings of the ventilator and not on the respiratory mechanics of the individual animals. In addition, intubation and ventilation can have unnatural effects on the respiratory dynamics of the animal, because the airway pressure, tidal volume, and respiratory rate are selected by the operator. In these experiments, important information about the symptoms of the respiratory disease being studied may be missed because the respiration is forced to conform to the ventilator settings. In this study, we implement a method of respiratory-gated micro-CT for use with anesthetized free-breathing rodents. From the micro-CT images, quantitative analysis of the structure of the lungs of healthy unconscious mice was performed to obtain airway diameters, lung and airway volumes, and CT densities at end expiration and during inspiration. Because the animals were free breathing, we were able to calculate tidal volume (0.09 +/- 0.03 ml) and functional residual capacity (0.16 +/- 0.03 ml).  相似文献   

15.
Measuring lung function in mice: the phenotyping uncertainty principle.   总被引:6,自引:0,他引:6  
Measuring lung function in mice is essential for establishing the relevance of murine models to human lung disease. However, making such measurements presents particular technical challenges due to the small size of the animal, particularly with regard to the measurement of respiratory flows. In this review, we examine the various methods currently available for assessment of lung function in mice and contrast them in terms of a concept we call the phenotyping uncertainty principle; each method can be considered to lie somewhere along a continuum on which noninvasiveness must be traded off against experimental control and measurement precision. Unrestrained plethysmography in conscious mice represents the extreme of noninvasiveness and is highly convenient but provides respiratory measures that are so tenuously linked to respiratory mechanics that they cannot be considered as meaningful indicators of lung function. At the other extreme, the measurement of input impedance in anesthetized, paralyzed, tracheostomized mice is precise and specific but requires that an animal be studied under conditions far from natural. In between these two extremes lie methods that sacrifice some precision for a reduction in the level of invasiveness, a promising example being the measurement of transfer impedance in conscious, restrained mice. No method is optimal in all regards; therefore, the appropriate technique to use depends on the application.  相似文献   

16.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

17.
Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.  相似文献   

18.
The human respiratory tract is covered with airway surface liquid (ASL) that is essential for lung defense and normal airway function. The quantity and composition of ASL is regulated by active ion transport across the airway epithelium. Abnormal electrolyte transport produces changes in ASL volume and composition, inhibits mucociliary clearance and leads to chronic infection of airway surfaces, as is evident in cystic fibrosis. Agonists that induce intracellular increases in cAMP or Ca2+ are generally associated with electrolyte secretion. While these mechanisms have been studied in detail for many years, modulation of ion channels by nitric oxide (NO) has emerged only recently as a significant determinant of ion channel function. NO is a physiological regulator of transepithelial ion movement and alterations of its generation and action may play an important role in the pathogenesis of lung disorders characterized by hypersecretion of ASL. This review presents the current understanding of regulation of airway epithelial ion channels by NO and attempts to highlight the importance of this regulation for lung defense.  相似文献   

19.
The human respiratory tract is covered with airway surface liquid (ASL) that is essential for lung defense and normal airway function. The quantity and composition of ASL is regulated by active ion transport across the airway epithelium. Abnormal electrolyte transport produces changes in ASL volume and composition, inhibits mucociliary clearance and leads to chronic infection of airway surfaces, as is evident in cystic fibrosis. Agonists that induce intracellular increases in cAMP or Ca2+ are generally associated with electrolyte secretion. While these mechanisms have been studied in detail for many years, modulation of ion channels by nitric oxide (NO) has emerged only recently as a significant determinant of ion channel function. NO is a physiological regulator of transepithelial ion movement and alterations of its generation and action may play an important role in the pathogenesis of lung disorders characterized by hypersecretion of ASL. This review presents the current understanding of regulation of airway epithelial ion channels by NO and attempts to highlight the importance of this regulation for lung defense.  相似文献   

20.
Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号